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ABSTRACT

IP Routers use sophisticated forwarding table (FIB) lookup

algorithms that minimize lookup time, storage, and update

time. This paper presents SMALTA, a practical, near-optimal

FIB aggregation scheme that shrinks forwarding table size

without modifying routing semantics or the external beha-

vior of routers, and without requiring changes to FIB lookup

algorithms and associated hardware and software. On typi-

cal IP routers using the FIB lookup algorithm Tree Bitmap,

SMALTA shrinks FIB storage by at least 50%, representing

roughly four years of routing table growth at current rates.

SMALTA also reduces average lookup time by 25% for a

uniform traffic matrix. Besides the benefits this brings to

future routers, SMALTA provides a critical easy-to-deploy

one-time benefit to the installed base should IPv4 address

depletion result in increased routing table growth rate. The

effective cost of this improvement is a sub-second delay in

inserting updates into the FIB once every few hours. We

describe SMALTA, prove its correctness, measure its perfor-

mance using data from a Tier-1 provider as well as Route-

Views. We also describe an implementation in Quagga that

demonstrates its ease of implementation.

1. INTRODUCTION

The extreme performance requirements placed on In-
ternet routers lead to difficult engineering constraints.
One of these constraints is the size of the forwarding ta-
ble (or Forwarding Information Base, FIB). One of the
factors that goes into determining how big to make the
forwarding table is global routing table growth. Router
vendors routinely try to set FIB size so as to comfort-
ably accommodate global routing table growth for the
expected lifetime of the router. This is not always suc-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2011, December 6–9 2011, Tokyo, Japan.

Copyright 2011 ACM 978-1-4503-1041-3/11/0012 ...$10.00.

cessful: it is not uncommon for the ISPs to undergo ex-
pensive FIB upgrades, or continue to use routers that
can no longer hold the full global routing table.

Of course, router vendors also try to use the high-
speed memory dedicated to the FIB as efficiently as
possible. Considerable effort goes into designing FIB
data structures (trees) and corresponding algorithms
that result in fast lookup times, fast update times, and
are compact in memory [5, 6, 3].
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Figure 1: SMALTA (dashed lines) operates with mini-
mal changes to existing router operation (solid lines). N
denotes a Prefix, Q denotes its corresponding Nexthop,
and OT denotes Original Tree.

This paper presents a FIB aggregation scheme called
SMALTA1 that reduces both the FIB size and the lookup
time, thus sharing the goals of FIB lookup algorithms.
SMALTA operates without any changes to either the
FIB lookup algorithm or the operation of routing pro-
tocols and their associated data structures (Routing In-
formation Bases, RIB). Rather, as shown in Figure 1,
SMALTA can be inserted between existing router func-
tions, which otherwise can go unchanged.
1Saving Memory And Lookup Time via Aggregation.
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Figure 2: Example of FIB Aggregation (original and
aggregated tables and corresponding trees)

In the normal router operation (without SMALTA),
the route resolution function takes input from multi-
ple sources (BGP, OSPF, etc.) and computes the set
of best-match prefixes and their nexthops (i.e., adja-
cent routers). This table of best-match prefixes and
nexthops is given to the FIB lookup algorithm which
generates a tree that is efficient in lookup time, update
time, and memory. SMALTA is inserted between these
two existing functions. It takes the original table of
best-match prefixes and nexthops, and generates a new
table that has fewer entries than the first. The new
table is semantically equivalent to the original [18]: a
lookup on the new table for any address will produce
the same nexthop as a lookup on the original table.
Simplistically stated, SMALTA operates by finding

pairs of entries that have the same nexthop and can be
reduced to a single entry. An obvious example would
be two prefixes that are adjacent in the address space.
For example, the two prefixes 2.0.0.0/8 and 3.0.0.0/8
could be aggregated to 2.0.0.0/7 if they have the same
nexthop. Figure 2 shows a slightly more complex ex-
ample whereby the two entries with nexthop A can be
aggregated to a single /14 entry even though there is
an entry with nexthop B in between them.
We are by no means the first to exploit this type

of compression. In 1998, Draves et al. designed an
algorithm called Optimal Routing Table Constructor
(ORTC) that generates a compressed table that is prov-
ably optimal by the number of entries in the table [4].
Their algorithm, however, requires that an aggregated
table be completely recomputed from scratch with each
change to the original table. The cost of this recom-
putation is linear with the number of nodes in the tree
structure, and can take from several hundred millisec-
onds to a second. It therefore alone is not practical for
use with commercial routers.
More recently, Liu et al. [9] designed two algorithms

for incrementally modifying the aggregated ORTC ta-

ble in response to individual updates. These algorithms
lack formal proofs (necessary given the complexity of
the update process [20]), and are not even fully speci-
fied. Besides this, the evaluation in [9] does not take
into account aggregation over IGP nexthops (versus
BGP nexthops), and it does not measure storage and
lookup time improvements (the parameters of actual
interest) in the FIB. Indeed we found that the improve-
ment in terms of FIB memory is about 12% less than
the improvement in terms of number of entries.

SMALTA is a provably correct incremental FIB ag-
gregation scheme also based on ORTC. In addition to
the correctness proof, we automatically computed the
correctness of millions of updated aggregated tables (i.e.,
verified that the use of aggregated table would forward
every IP address to the same nexthop as with the orig-
inal table [18].) We provide a thorough evaluation of
SMALTA, using dynamic BGP traces from operational
routers as well as for routers with a range of synthetic
configurations. Crucially, we focus on the effect to the
FIB itself, including memory savings, lookup time, and
number and frequency of FIB changes (for the state-of-
the-art FIB lookup algorithm Tree Bitmap [5]). We re-
port on our implementation of SMALTA for Quagga [12].
In all, this paper aims to give the ISPs and router ven-
dors an adequate basis for making confident decisions
about the pros and cons of implementing and deploy-
ing SMALTA. Towards that end, we have presented
SMALTA at the IETF [19] drawing significant com-
munity interest, and will continue our work to publish
SMALTA as an informational RFC.

In all, we find that SMALTA shrinks FIB memory
by about one-half. This leads to a roughly 25% im-
provement in the number of memory accesses for FIB
lookup. This also extends the lifetime of the installed
router base by roughly four years at current routing ta-
ble growth. This could be very important should rout-
ing table growth accelerate due to the exhaustion of
IPv4 addresses. The effective cost of SMALTA is mini-
mal: once every few hours, FIB updates are delayed for
around one second or less as the FIB is re-optimized.

This paper makes the following contributions:

• SMALTA, the first incremental FIB aggregation
scheme that is: near-optimal, fully-specified, prov-
ably correct, and maintains forwarding semantics.

• A thorough evaluation of SMALTA for both de-
ployed routers and synthetically configured routers
which, in addition to the traditional measure of
number of table entries for BGP nexthops and
running time, measures: FIB memory savings and
lookup time, the effect of IGP nexthops, the ef-
fect of the distribution of prefixes over IGP nex-
thops, and the effect of SMALTA on the number
and burstiness of FIB changes.



• A description of an implementation of SMALTA
for Quagga demonstrating the relative ease of in-
troducing SMALTA into a router.

1.1 Outline

Section 2 describes the operation of SMALTA at a
high level. Section 3 fully specifies the SMALTA al-
gorithms, and gives an outline of correctness proofs.
Section 4 describes our experiments with data from a
Tier-1 provider as well as from RouteViews. Section 5
describes our implementation of SMALTA in Quagga.
Finally, Sections 6 and 7 present related work, and con-
clusions and future work respectively.

2. DESCRIPTION

SMALTA operates on a longest-prefix routing table.
Table entries consist of an address prefix, denoted as N ,
and a nexthop, denoted as Q. Packets are forwarded
to the nexthop of the longest prefix that matches the
packet destination address. Though other data struc-
tures may be used, our description, proof, and imple-
mentation assume that the routing tables are in the
form of a tree, for instance as shown in Figure 2. We
will generally refer to a routing table as a tree.
In practice, a routing table is updated as changes to

the network or routing policies occur. We specify two
functions, Insert and Delete for these updates. The
function Insert(N,Q) either inserts a new prefix N into
the tree, or changes the nexthop Q of the existing prefix
N . The function Delete(N) removes an entry from the
tree. The term update refers to both inserts and deletes.
Figure 1 shows that SMALTA takes as input a stream

of non-aggregated updates, and produces a stream of
aggregated updates. Internally, SMALTAmaintains the
non-aggregated tree generated by the received updates,
called the Original Tree (OT ), and the Aggregated Tree
(AT ) produced by the transmitted updates. The result
of a single (received) update is zero or more updates
transmitted to the FIB. We refer to these transmitted
updates as FIB downloads. From our measurements
(Section 4), SMALTA produces on average slightly less
than one FIB download for each update (Figure 10).
The incremental changes to the aggregated tree pro-

duced by updates are computationally very efficient.
However, these changes do not result in an optimal tree
as measured by the number of prefixes stored within the
tree. Rather, with each subsequent update, the aggre-
gated tree on average drifts further from optimal.
To remedy this, SMALTA has an internal function

called snapshot(OT) that takes as input the entire orig-
inal tree OT and produces a complete new aggregated
tree. Like [9], snapshot(OT) uses ORTC [4], and as
such the aggregated tree it produces is optimal. snap-
shot(OT) is called when the original tree is first initial-
ized, for instance upon router startup. Subsequently,

incremental updates cause the aggregated tree to drift
away from optimal. snapshot(OT) is periodically re-
peated, for instance after some number of updates, or
after the aggregated tree has grown by more than a
certain amount. Our measurements show that the ag-
gregated tree drifts only a few percent from optimal
even after tens of thousands of incremental updates
(Figure 9). With each snapshot(OT), the aggregated
tree returns to optimal.

When a router first boots up, it obtains and installs
routes from its neighbors before it advertises routes to
its neighbors. This way, it does not receive data packets
before it is ready to forward them. BGP has an explicit
mechanism, the End-of-RIB marker, that allows a BGP
speaker to tell its neighbor when its entire RIB has been
conveyed [15]. While BGP is initializing but before the
End-of-RIB is received, SMALTA inserts updates into
the original tree, but does not process them further. In
other words, nothing is put into the aggregated tree,
and no FIB downloads are produced. After the BGP
control has received all End-of-RIB markers from all
neighbors, SMALTA runs its initial snapshot(OT).
When this initial snapshot(OT) runs, its output is

a set of FIB downloads in the form of inserts corre-
sponding to the complete aggregated tree (AT ). When
snapshot(OT) runs subsequently, its output is a set of
FIB downloads consisting of both inserts and deletes
that comprise the delta between the pre-snapshot AT

and the post-snapshot AT . Specifically, for each prefix
N that is in the pre-snapshot AT but not in the post-
snapshot AT , a Delete(N) is FIB downloaded. For each
prefix N that is not in the pre-snapshot AT but in the
post-snapshot AT , an Insert(N,Q) is FIB downloaded.
For each prefix N that is in both AT ’s, but with differ-
ent nexthop Q, a Delete(N) followed by an Insert(N,Q)
are FIB downloaded. Note that this is essentially what
is done today in the context of Graceful Restart [10,
15]. Our measurements show that a call to snapshot af-
ter 20K updates (about two hours of updates) generates
roughly 2000 FIB downloads (Figure 10).

The snapshot takes less than a second to run (for cur-
rent BGP table sizes and on hardware with capabilities
comparable to current routers). While the snapshot is
running, updates are queued up. After the snaphot has
finished, and the delta FIB downloads are produced, the
queued updates are processed. This means that during
calls to snapshot, a small number of routing events are
delayed by a fraction of a second. Practically speaking,
assuming that the snapshot is called every other hour
or so, one in a few thousand routing events will take
slightly longer to load into the FIB.

2.1 SMALTA Algorithms

SMALTA uses ORTC for its snapshot algorithm [4].
ORTC makes three passes over the tree:



1. Pass-1: a normalization pass in which the prefixes
are expanded such that every node in the binary
tree has two or no children,

2. Pass-2: a post-order traversal up the tree, wherein
each node is assigned a set of nexthops, and

3. Pass-3: in which the algorithm assigns nexthops
to prefix nodes in the tree starting from the root
and traversing through to the leaves, removing any
unnecessary leaves.

2.1.1 The Update Algorithms

Incorporating an update into the AT may at first
glance appear simple: a prefix node is either created,
updated or its nexthop is removed. Such ‘naive’ incor-
poration of the updates into the AT , leads to semantic
incorrectness. This is best illustrated by an example.
Figure 3 continues the example from Figure 2, addi-
tionally showing an insert, with nexthop Q, received
for the indicated node. If this update is ‘naively’ incor-
porated in AT and OT , the two resulting trees (bottom
part of Figure 3) become semantically different.
This example illustrates just one of numerous ‘corner’

cases that can be encountered; all such cases are exhaus-
tively dealt with in the design of SMALTA algorithms
given in Section 3. The incorrectness of direct incor-
poration of updates into the AT inherently stems from
the process of aggregation. To incorporate an update
into the AT , we make the following key observation:
The prefix in each BGP update message covers some

IP address space. In the original table, a single prefix
node covers this space. But, in the aggregated table, it
may take multiple nodes to cover the same space.
The SMALTA update algorithms work by identifying

the set of such nodes in the AT that cover the same IP
space as covered by the prefix in a BGP update message,
and then making corresponding changes to those nodes.
For the above example, Figure 4 shows the correct way
of incorporating the insert.
Next, we present an intuitive but incomplete descrip-

tion of the SMALTA update algorithms. Section 3 pro-
vides the complete algorithms and the outlines of their
proofs which are detailed in a technical report [20].
Insert(N,Q): In order to insert a prefix N , the ad-

dress space of N should be assigned to the newly in-
serted nexthop Q. This is achieved by setting Q as the
nexthop of N in the aggregated tree AT (Step-1 in ex-
ample of Figure 4). This may incorrectly claim extra
space covered by some prefixes in OT (specifics of N)
that were aggregated into its immediate ancestor prefix
in the AT . We must restore all such prefixes (Step-2
in Figure 4). Finally, we must also reclaim the space
covered by the specifics (also called deaggregates) of N
in favor of Q (Step-3 in Figure 4).
Delete(N): To delete a prefix N , the ownership of
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corporating the insert into the AT of Figure 3.

the address space originally covered by N should be
given up in favor of the nexthop of its immediate an-
cestor prefix NO in the OT . This can be achieved by
setting nexthop of N in the AT equal to that of NO

in the OT . As before, this may incorrectly claim extra
space covered by some prefixes in OT (specifics of N)
that were aggregated into its immediate ancestor prefix
NA in the AT . Thus, we restore all nearest descendent
prefixes of N if their nexthop does not match the new
nexthop of N . Finally, we reclaim the space covered by
the deaggregates of N by setting their nexthops equal
to that of NO. Next section provides the details.

3. SMALTA UPDATE ALGORITHMS

3.1 Definitions

Definition 1. We use {0, 1}W to denote the set of
all strings of length W (32 for IPv4) over binary alpha-
bet Σ = {0, 1}. The set of prefixes to all these strings,
including the empty prefix δ, is denoted by {0, 1}≤W .
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Definition 2. Let P ⊆ {0, 1}≤W and N be the set
of all possible nexthops including the null nexthop ε. A
prefix table for P is given by a total mapping d : P →
N . From d, we construct a labeled binary tree in which
a node n(p) represents p ∈ P such that p describes a
path to node n(p), i.e., an ith digit 0 (resp. 1) in p

corresponds to a left (resp. right) successor on level i of
that tree. We regard d(p) as a label of n(p) assuming a
labeling of ε for every node whose corresponding prefix
does not exist in P. We use a ‘prefix table’ and its tree
representation interchangeably.

We use OT (Original tree/table) to denote the ta-
ble containing prefix set P. The nexthop for a prefix
p ∈ P is denoted by dO(p). The function call snap-
shot(OT) results in a table—written as AT (Aggregated
tree/table)—which contains a new set of prefixes P ′.
We use dA(p

′) to denote the nexthop for a p′ ∈ P ′.
Each p′ ∈ P ′ can be one or more of three types:

1. An Aggregate (A) obtained by shortening (from
the right) one or more prefixes in P. The node
n(p′) is also regarded as an aggregate.

2. A Deaggregate (D) obtained by extending (to the
right) a prefix in P. The node n(p′) is also re-
garded as a deaggregate.

3. Untouched (U) in which case p′ is obtained from a
p ∈ P without alteration.

The example in Figure 5 shows an OT and the re-
sulting AT after calling snapshot(OT), and depicting all
the possible combinations of node/prefix types in AT.
Thus, each p′ ∈ P ′ is generated by (shortening, extend-
ing, or keeping intact) some prefixes in P all of which
are called the preimages of p′. It may be noted that if
p ∈ P is a preimage of p′ ∈ P ′, then dO(p) = dA(p

′).

Definition 3. For any two prefixes p and p′, we
write p < p′ to indicate that p is a proper prefix of p′;

we also write p ≤ p′ to indicate a case where p might
also be equal to p′.

Definition 4. For a prefix p in ◦T , where ◦ ∈ {A,O},

• Ψ◦(p) := longest p′ with p′ < p ∧ d◦(p
′) 6= ε;

• Ψ=
◦ (p) := longest p′ with p′ ≤ p ∧ d◦(p

′) 6= ε;

• Λ◦(p) :=
{

p′ ∈ {0, 1}≤W | p ≤ p′ ∧ ( 6 ∃p′′)
(p < p′′ ≤ p′ ∧ d◦(p

′′) 6= ε)}.

Thus, p with d◦(p) 6= ε is the longest matching prefix
for every prefix in the set Λ◦(p). In other words, Λ◦(p)
is the set of all prefixes p′ for which the node n(p) (in
tree ◦T ) is the last explicitly labeled node visited when
processing a query for p′. Such a query is answered
by traversing ◦T according to the bits in p′ until either
a leaf is reached or the requested successor of the ac-
tual node does not exist. Accordingly, we think of the
non-null nexthop of node η to be propagated to all its
descendants until either a leaf or another explicitly la-
beled node is reached. The other way round, we will
say that node η′ inherits a nexthop when η′ is among
the nodes to which a nexthop is propagated.

Definition 5. A nexthop h is said to be present at
a node η when η is either explicitly labeled with h (and
propagates h to all its descendants) or it inherits h from
a nearest ancestor which propagates h to η.

3.2 Algorithms

Once a call to the snapshot(OT) results in an AT ,
subsequent updates are individually incorporated into
that AT by calling one of the SMALTA update algo-
rithms. For a prefix N in AT , (i) a new nexthop Q is
inserted by making an Insert(N,Q) call, and (ii) a prefix
N is deleted by making a Delete(N) call. In case of a
delete, we assume that dO(N) 6= ε.

We will use index O (resp. O′) to address OT before
(resp. after) calling one of the above two update algo-
rithms. The notation pi(N) will be used to represent a
pointer to the preimage of N in OT ; we will also use η̂

to denote a pointer to node η. For both algorithms, and
for each update, variable X (resp. R) is used to store
the nexthop present at n(N) in AT before (resp. after)
that update.

In the Delete algorithm, we use the boolean Nagg

which is set true if and only if n(N) in AT is a pure
aggregate i.e. no deaggregate or untouched prefix is as-
sociated with n(N).

From the intuitive description of the algorithms in
Section 2.1.1, incorporating an update into the AT re-
quires steps to ‘repair’ the AT ensuring semantic equiv-
alence with the corresponding OT . Algorithms 1 and 2
provide a complete listing of the intuitive explanation
given in Section 2.1.1. Both of the SMALTA update al-
gorithms use another algorithm namely reclaim (shown
as Algorithm 3) to make some of these repairs.



Algorithm 1 Insert(N,Q)

(1) proc Insert(N,Q) ≡
(2) P := Ψ=

O(N); I := ΨA(N); pi(N) = nil;
(3) if dA(N) = ε
(4) comment: n(N) /∈ {Agg, Unt, Deagg}
(5) then if dA(I) 6= Q
(6) then X := dA(I); R = Q;
(7) dA(N) := Q; reclaim(N,R,X);
(8) fi
(9) else comment: dA(N) 6= ε

(10) if dO(N) = ε or dO(N) = dA(N)
(11) then
(12) X := dA(N); R := Q;
(13) if dA(I) = Q
(14) then dA(N) := ε;
(15) else dA(N) := Q; fi
(16) reclaim(N,R,X);
(17) fi
(18) fi
(19) comment: Visit Deaggs of P under n(N)
(20) for E ∈ { D | D has preimage P,N ≤ D } do
(21) pi(E) := ˆn(N); dA(E) := Q;
(22) reclaim(E,Q, dO(P ));
(23) od
(24) end

Algorithm 2 Delete(N)

(1) proc Delete(N) ≡
(2) Nagg := false; P := ΨO′(N); I := ΨA(N);
(3) if dA(N) 6= ε
(4) then if dA(N) = dO(N)
(5) then X := dA(N); R := dA(I);
(6) dA(N) := ε;
(7) else Nagg := true;
(8) fi
(9) else comment: N has been aggregated to I

(10) X := dA(I);
(11) fi
(12) if not Nagg

(13) then if dO′(P ) 6= dA(I)
(14) then dA(N) := dO′(P );
(15) R := dO′(P ); pi(N) := ˆn(P );
(16) else if P < I
(17) then R := dO′(P ); pi(I) := ˆn(P );
(18) fi
(19) fi
(20) if dO′(P ) 6= X then reclaim(N,R,X); fi
(21) fi
(22) for E ∈ { D | D deaggregate of N } do
(23) pi(E) := ˆn(P ); dA(E) := dO′(P );
(24) reclaim(E, dO′(P ), dO(N));
(25) od
(26) end

3.3 Correctness Proofs: Outline

The basic idea in proving the correctness of our algo-
rithms is as follows:
As a first step, we come up with two invariants which

characterize the relationship of aggregates (resp. deag-
gregates) to their preimages, together with the proper-
ties of their connecting paths in the AT (resp. OT ).

Algorithm 3 reclaim(E,α,β)

For node n(E), α (resp. β) is the nexthop present af-
ter (resp. before) a change to AT , i.e. either dA′(E) =
α (resp. dA(E) = β) or α (resp. β) is propagated up
to node n(E) by a predecessor. Then procedure re-
claim first optimizes AT making use of the new value α
and then reclaims prefixes for nexthop β which were for-
merly aggregated up and are now incorrectly covered by α.
(1) proc reclaim(E,α, β) ≡
(2) for n(D) a descendant of n(E) in OT or AT do
(3) if dA(D) = ε = dO′(D)
(4) then reclaim(D,α, β);
(5) else if (dA(D) = α) or (dO′(D) = α)
(6) then if dA(D) = α
(7) then dA(D) := ε; pi(D) := nil;
(8) else if dA(D) = ε
(9) then reclaim(D,α, β);

(10) fi
(11) fi
(12) else if (dO′(D) = β) and (dA(D) = ε)
(13) then dA(D) := β;
(14) else if (dO′(D) 6= β) and (dA(D) = ε)
(15) then reclaim(D,α, β);
(16) fi
(17) fi
(18) fi
(19) fi
(20) od
(21) end

We state these invariants here:

Invariant 1. On the path from a deaggregate p to
its preimage p′ only null nexthops can be found in OT .

Consider the example in figure 5. The left child of the
root node in OT is the preimage p of the far left node
p′ (with label A) in AT . Clearly, all nodes between p

and p′ in OT have null nexthops.

Invariant 2. On the path from an aggregate p to
any of its preimages p′ in OT only null nexthops can be
found in AT (or the corresponding nodes do not exist
in AT ).

Once again, we notice that each aggregated node in the
AT of figure 5 exemplifies this invariant.

We then use the construction of AT by ORTC to
prove that the invariants are initially fulfilled – i.e., after
a call to snapshot(OT) [20].

In the second step towards proving our update algo-
rithms (Insert and Delete), we show that a call to either
of these algorithms does not affect the invariants. Fur-
thermore, we prove that for any path along which the
nexthops (explicit or propagated/inherited) may be af-
fected by a call to these algorithms, the nexthop finally
used to answer a lookup query is, in all cases, the same
for AT and OT . To show this, we first note that a call
to either of our update algorithms for a prefix p can only
affect queries for p′ ∈ Λ◦(p). For those p′, the nexthop



propagated by p is the one that determines the routing.
Thus, assuming that AT has provided the right next-
hop for every p′ ∈ {0, 1}W before a call to Insert (resp.
Delete), it is sufficient to show that within AT the cor-
rect nexthop is propagated (resp. inherited) by p after
the call to Insert (resp. Delete) and that this call does
not cause any side effects for prefixes in ΛA(p̄), p̄ 6= p,
in order to prove its correctness.
In summary, the second step shows that after apply-

ing one of our update algorithms (i) both trees (OT and
AT ) remain semantically equivalent, and (ii) both the
invariants remain fulfilled.
In the third and final step, we use the proof arguments

iteratively to show that any sequence of calls to Insert or
to Delete operations is correctly handled by SMALTA.
Complete proofs with details of various cases can be
found in [20].
Our case selection in the second step is exhaustive

as we consider calls to Insert and Delete for all pos-
sible node states. In fact, using this generic and ex-
haustive formulation of cases, we were able to identify
some rarely-occurring corner cases, comprising specific
sequences of updates, that were undetected in the im-
plementation.

4. PERFORMANCE EVALUATION

Our evaluation of SMALTA spans two data sets, one
obtained from routers in a large Tier-1 service provider
and another obtained from routeviews [14]. The eval-
uation criteria focuses on: (i) savings in FIB storage,
(ii) reduction in FIB lookup memory accesses, and (iii)
changes and delays to FIB updates.
We report SMALTA improvements compared to the

case when no FIB aggregation is used. For complete-
ness, we also provide a head-to-head comparison be-
tween SMALTA and two previously proposed FIB ag-
gregation approaches, namely Level-1 (L1) and Level-
2 (L2) [22, 21]. Similar to how prefix aggregation is
done in BGP today, L1 drops more specific prefixes
when a less specific prefix has the same nexthop, and
L2 additionally aggregates sibling prefixes having the
same nexthop. As expected, SMALTA significantly out-
performed these simple FIB aggregation approaches in
both the amount of FIB memory and the lookup time.

4.1 Data Sets

4.1.1 Tier-1 Provider data set

We gathered routing data for two types of border
routers in the Tier-1 provider: those connecting to cus-
tomer networks (called Access Router, or AR), and those
connecting to peer networks (called Internet Gateway
Router, or IGR). We gathered iBGP updates for the
IGRs, which acted as route reflectors to a monitor sim-
ilar to [11]. These updates are the result of the best-

path selection process by the IGR, and so represent the
updates that go to the FIB. We start our traces at BGP
reset events. This allows us to construct the initial RIB
state from the updates in the burst following the reset
event. Subsequent updates from the IGR are regarded
as part of the update trace for that IGR. We selected
two such IGRs for our evaluation of SMALTA, one on
the east coast and one on the west coast of the conti-
nental United States. The update trace spans 12 hours.
The results for these two IGRs were roughly the same,
so we report only on the west coast IGR.

For the ARs, we obtained snapshots of the set of ta-
ble entries in the FIB. We collected these snapshots for
five ARs each with a varying number of IGP nexthops,
and use these to report on the effect of IGP nexthops.
Note that, in this provider network, neither route reflec-
tors nor core routers are suitable candidates for study.
The route reflectors are not in the data plane and so
don’t require FIBs as such, and the core routers for-
ward MPLS packets and don’t contain global routing
tables.

4.1.2 Routeviews data set

We used the routeviews [14] BGP feeds to mimic a
router with a number of eBGP peers, one per route-
views feed. To do this, we assumed a simple best-path
selection policy to determine the updates to the FIB.
We also modeled a varying number of IGP nexthops
by mapping each eBGP peer to an IGP nexthop in a
round-robin fashion.

We generated FIB snapshots from the first RIB data
file on December 15 for each year from 2001 to 2010,
and then used a full day of subsequent updates.

4.2 FIB lookup algorithm

The percent savings in the number of entries in the
Aggregated Tree (AT) does not necessarily reflect the
percent savings in FIB memory. This is because FIB
lookup data structures employ their own storage op-
timizations, so the percentage savings in FIB memory
may not match the savings in the number of FIB en-
tries. Different FIB lookup algorithms may have differ-
ent savings. In addition, the reduction in the number of
memory accesses for FIB lookup may vary depending on
the specific FIB lookup algorithm. In our experiments,
we used Tree Bitmap (TBM) as the FIB lookup algo-
rithm [5]. TBM is a state-of-the-art storage-efficient
lookup algorithm used in some present-day high-end
commercial routers. In particular, we use the software
reference design (Sec. 6 of [5]) of TBM to compute FIB
storage and memory accesses. We tested a variety of
stride lengths and selected the one that minimizes the
memory requirement. For our implementation of TBM,
we used 32-bit pointers, the Initial Array Optimization
followed by a constant stride length of 4. Altogether,
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Figure 6: Results (Routeviews, 2006) showing AT size
as a percentage of OT size, as a function of unique
IGP nexthops (horizontal axis). Results for other years
(2001 to 2010) are similar.

the size of a single TBM node in our experiments is
8 bytes. For our experiments, we measure the mem-
ory consumed by TBM, as well as the lookup time ex-
pressed as the average number of memory accesses per
lookup assuming every IP address in the covered space
is equally likely to be looked up.

4.3 Results

Effect of the number of IGP nexthops: Previ-
ous studies of aggregation have used BGP nexthops.
SMALTA, however, aggregates prefixes based on their
IGP nexthops.2 Intuitively, we would expect that one
gets better aggregation by using the IGP nexthops in-
stead of BGP nexthops. This is because multiple BGP
nexthops may map to a single IGP nexthop, creating
additional opportunities to aggregate the prefixes. By
the same token, one may expect to achieve higher degree
of aggregation if the number of unique IGP nexthops is
smaller. To support this intuition, we present two re-
sults, one from the routeviews data set and the other
from the ARs in the provider data set.
Figure 6 shows the effect of varying the number of

IGP nexthops from one to 48, the total number of BGP
nexthops for the routeviews collection in 2006. When
there is a single IGP nexthop, the snapshot produces
an aggregated table with only a single entry. Two IGP
nexthops gets slightly under 80% reduction (solid line),
and by the time we reach 48 IGP nexthops we get about
55% improvement.
Measurements from the Tier-1 provider show similar

trends. Table 1 summarizes the snapshot results for five
ARs in the Provider network. From the results in this
table, however, we see no relation between the number
of IGP nexthops and the percent reduction in the num-
ber of entries. In particular, AR-1 offers significantly
higher reduction (87%) in the number of prefixes; our
investigation indicated that this was because most of
the prefixes handled by AR-1 were assigned to a single

2All links in the provider network we used in our experi-
ments were point to point. For such links, IGP nexthops
have a one-to-one relation with interfaces.

AR-1 AR-2 AR-3 AR-4 AR-5

E(·) 1.061 1.766 1.845 2.01 3.164
#NH 89 419 25 9 652
#(OT ) 427,205 426,175 426,736 427,520 428,766
T(OT ) 2.10 2.10 2.10 2.10 2.10
#(AT ) 56,486 81,456 91,039 171,996 237,915
T(AT ) 1.09 1.18 1.26 1.53 1.68
#(L1) 209,686 231,129 235,532 292,432 340,571
T(L1) 1.89 1.92 1.92 1.99 2.02
#(L2) 118,980 147,376 158,925 248,295 307,442
T(L2) 1.78 1.82 1.85 1.96 2.02

Table 1: Impact of the actual number of IGP nexthops
#NH and effective number of nexthops E(·) on the ag-
gregation results for ARs after applying snapshot. T(·)
refers to the number of lookup memory accesses.

nexthop, some were assigned to a second nexthop and,
each of the remaining nexthops provided reachability to
only a couple of prefixes each. In other words, the effec-
tive number of nexthops is small even though the actual
number is quite large. To approximately capture this
effect for a given AR, we compute the entropy under-
lying the number of prefixes assigned to each nexthop.
From this, we compute the effective number of IGP nex-
thops E(R) for a router R as follows: If f is the total
number of unique nexthops on R and ni is the number
of prefixes assigned to the ith nexthop, then:

log2 E(R) =

f
∑

i=1

−pi log2 pi;

where pi =
ni

∑f

j=1 nj

Table 1 also lists the number of effective nexthops
(first row) for each of the five service provider ARs and
we notice their correlation with the percent reduction in
the size of the AT . This is visually depicted in Figure 7.
The trend in this figure (shown as dotted) corroborates
with the graphs we see from the routeviews data (Fig-
ure 6), i.e., increasing the number of distinct effective
nexthops reduces the extent of aggregation.

In addition to SMALTA results (depicted by #(AT
and T(AT )), performance results for L1 and L2 ap-
proaches are also shown in Table 1. Clearly, SMALTA
achieves significantly better aggregation. Furthermore,
while L1 and L2 bring about a moderate reduction in
the lookup time (depicted by the parameter T(·)), we
note that SMALTA results in much faster lookup speeds.
These results remained consistent across all our exper-
iments in all data sets.
TBM efficiency: Figure 6, as well as Table 2, show
that the memory savings of TBM, while substantial, are
not as good as the savings in the number of prefix entries
in the aggregated tree: roughly 12% less savings overall.
In Figure 6, the savings difference is consistent from 2



Initial After 183719
Snapshot Updates (12 hrs)

#(OT ) 418,033 418,090
M(OT ) 2,361,714 2,362,460
T(OT ) 2.103 2.104
#(AT ) 156,877 (37.5%) 159,866 (38.24%)
M(AT ) 1,177,138 (49.84%) 1,188,188 (50.29%)
T(AT ) 1.550 (73.7%) 1.553 (73.8%)
#(L1) 282,641 (67.6%) -
M(L1) 1,673,242 (70.85%) -
T(L1) 1.974 (93.8%) -
#(L2) 219,704 (52.6%) -
M(L2) 1,486,144 (62.93%) -
T(L2) 1.927 (91.6%) -

Table 2: IGR-1 (8 IGP nexthops) aggregation before
and after the updates. M(·) denotes the FIB memory
(bytes), and T(·) the average number of memory ac-
cesses for a lookup. IGR-2 produced similar results.

IGP nexthops and up. The case of a single IGP nexthop
represents a non-linearity (all prefixes aggregated to a
single entry) and is not expected to occur in practice.
Note that FIB data structures other than TBM may

experience different levels of memory savings, depend-
ing on the actual mechanism used in storing the FIB en-
tries. Router vendors must test against their own FIB
storage methods to determine the benefits of SMALTA.
Table 2 shows that aggregation via SMALTA results

in about 25% average savings in number of memory
accesses (and hence, lookup time). This assumes a uni-
form traffic matrix. Similar savings were obtained for
provider ARs, as indicated in Table 1 (and Figure 7),
though the amount of savings in lookup time varied
from 48% (for the router which results in smallest num-
ber of entries in AT ) to about 20% (for the router with
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cesses in the AT (as a percent of those in OT ) after call
to snapshot. Results are shown for five Provider ARs
(AR-1 through AR-5) with varying number of effective
nexthops (horizontal axis). The dotted lines indicate
the trend.

most number of entries in the AT ). Experiments with
routeviews data showed similar trends. Indeed, when
the number of IGP nexthops is one, we just have a sin-
gle ‘Initial Array’ for TBM, which results in a single
memory access.

These significant savings in memory and lookup time
are the primary benefits of SMALTA.

Table 2 also includes the comparative results for the
L1 and L2 aggregation approaches. Once again, we note
that L1 consistently resulted in roughly 30% less aggre-
gation, and L2 about 15% less. In all cases, the ‘end-to-
end’ FIB memory savings are roughly 12% less than the
savings in the number of entries. The savings in lookup
times for L1 and L2 are even less prominent, averag-
ing less than 10% compared to the average lookup time
reduction of 25% in case of SMALTA.

Given the substantially poorer snapshot performance
of L1 and L2 compared to SMALTA, we felt it unec-
essary to implement and test the performance of in-
cremental updates for L1 and L2. We therefore don’t
show performance numbers for after the 12 hours of
updates for L1 and L2 in Table 2. Nevertheless, as
with SMALTA and other update algorithms for instance
from [22], we can expect less aggregation with subse-
quent updates, as shown by Figures 9 and 10 in [22].

Note that the time to process each incremental up-
date is insignificant for all approaches (less than 1 mi-
crosecond, as described later in this section).
Effect of incremental updates on tree efficiency:

Figures 8 and 9 show the efficiency of the aggregated
tree as incremental updates are applied without an in-
tervening call to snapshot. In Figure 8, starting from
an optimal efficiency of around 37.5%, the efficiency de-
grades by less than a percent even after 183,719 updates
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received over a 12 hour period. Likewise figure 9 shows
only a few percentage points degradation after tens of
thousands of updates gathered over a 24 hour period.
This result so far suggests that a call to snapshot can

be made infrequently (many hours). Note also that the
time it takes to run snapshot does not increase with
the number of intervening updates, lending additional
support to this suggestion. It is possible, however, that
running snapshot after a large number of updates pro-
duces an unacceptably large number of changes to the
FIB. We discuss this next.
Effect of incremental updates on FIB downloads:

Figure 10 shows the effect of both incremental updates
and snapshots on the number of changes to the FIB,
called FIB downloads. This figure is for the experiment
for IGR-1 with 183719 updates. The x-axis of both
graphs gives the number of incremental updates be-
tween consecutive calls to snapshot during the course of
each experiment. The line labeled Update in the upper
graph shows the number of FIB downloads due to the
incremental updates. This line is essentially horizontal,
and shows that for each incremental update, there are
about 0.63 (∼120,000/183,719) FIB downloads. The
line labeled Snapshot shows the FIB downloads that
take place as a result of the snapshot—i.e. the delta
between the old and new aggregated trees. From this
line, we see that the total number of FIB downloads due
to snapshots decreases as the spacing between snap-
shots increases. However, as the lower graph shows
(line labeled Snapshot Burst), the average number of
FIB downloads per snapshot actually increases with the
number of intervening updates.
The impact of a burst of FIB downloads on the FIB

operation depends on the FIB architecture. We note,
however, that routers must be capable of responding

quickly to a massive number of FIB changes, for in-
stance because a link going down may change the path
to a large number of destinations. We measured the
time to incorporate an update for the service provider
IGRs on a general purpose Core 2 Duo (3GHz, 1333Mhz,
6MB) machine with 4GB of RAM (2 x 800MHz Dual-
Channel DDR2 NON-ECC), and discovered that, on
average, it took less than one microsecond to incorpo-
rate an update. Practically speaking, a router vendor
needs to decide how many consecutive FIB downloads
are acceptable, and then run the snapshot often enough
to stay under this number. The lower graph of Figure 10
shows that even after 20,000 updates, a snapshot pro-
duces only 2000 FIB downloads. This corresponds to
over one hour between snapshots for the IGR-1 trace.
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Figure 10: Effect of number of updates between snap-
shots on FIB downloads (IGR-1). Upper graph shows
total number of FIB downloads due to calls made to
updates and snapshots respectively over the full run
(183719 updates over 12 hours). Lower graph shows
the number of FIB downloads per snapshot. In both
graphs, the horizontal axis represents the number of
updates between two consecutive calls to snapshot.

Effect of snapshot on FIB download delay: Dur-
ing a snapshot, received updates to SMALTA are queued
up, and only processed after the snapshot completes.
This means that every hour or so, convergence is slowed
by the time it takes to run the snapshot. [9] reported
snapshot run times of roughly 200ms for RouteViews
tables (a few 10s of nexthops). We had similar results
for a similar number of nexthops. However, snapshot
takes longer to run with an increase in the number of



nexthops, so we ran snapshot using data from a Tier-1
provider router with a large number of IGP nexthops
(roughly 650). In this case, snapshot takes roughly one
second to run with a standard desktop computer. In
other words, the practical cost of running SMALTA is
a sub-second delay in FIB downloads every few hours.
Given that iBGP convergence times are often multi-
second, this added cost is entirely acceptable.

5. IMPLEMENTATION

We have implemented SMALTA by adding fewer than
2000 lines of code to the Quagga software router code
on Debian Linux. Our implementation directly maps to
the abstract description in Figure 1 which shows that a
software layer is inserted between the RIB and FIB data
structures. In our code, this layer has been added inside
the zebra daemon and takes over all the communication
to the kernel. We allow the activation of SMALTA at
this layer through the router CLI.
In Quagga, the protocols are implemented as dae-

mons, each of which communicates with zebra which, in
turn, is responsible for maintaining the kernel table (i.e.,
the FIB). To this end, zebra communicates with the ker-
nel via netlink socket by calling the rib install kernel()
and rib uninstall kernel() functions for installing and re-
moving prefixes from the kernel table. By inserting the
SMALTA layer, we change the behavior of these func-
tions so that rather than communicating with the ker-
nel directly the said functions re-route the updates to
the SMALTA algorithms. At this point, SMALTA is
supplied with the updates and the changes are commu-
nicated to the kernel via zebra’s open netlink socket3.
In all, the changes are local to the zebra code and do
not touch any other protocol code.
We may note that an implementation of SMALTA

is dependent on the specific platform architecture used
by a vendor. However, based on our experience with
Quagga (which is architecturally similar to many pro-
prietary implementations), we expect that deploying
SMALTA would require minimal changes to the code
base of routers from commercial vendors.

6. RELATED WORK

In 1996, Richardson proposed the idea and a simple
implementation of FIB aggregation [13], however its ef-
fectiveness on real-world forwarding tables was not de-
termined. In 1999, Draves et al. designed a FIB Aggre-
gation scheme that is provably optimal by the number
of entries in the table [4]. Their algorithm, however,

3Some kernels may not support the use of netlink socket in
which case quagga uses alternate methods to communicate
with the kernel. However, use of netlink sockets is the pre-
dominant way of communicating with the newer versions of
the Linux kernel and is the one used in our implementation.

requires that an aggregated table be completely recom-
puted from scratch with each change to the original ta-
ble. FIB aggregation and related algorithms have also
been widely discussed, albeit informally, in the IETF
Routing Research Group (RRG) meetings and mailing
lists [8]. In 2009–2010, Liu et al. proposed four FIB
aggregation algorithms with differing levels of complex-
ity and performance [21, 22]. Two of these (so-called
Level-3 and Level-4) have very good compression, but
require that non-routable destinations be ‘whiteholed’
by assigning nexthops to them, potentially causing rout-
ing loops [16]. The other two (Level-1 and Level-2) do
not aggregate as well as SMALTA. The work closest
to SMALTA is also by Liu et al. in 2010 [9]. The al-
gorithms used in this work are not fully specified and
may actually lead to routing incorrectness, as detailed
in [20].

There is a substantial body of work on fast FIB lookup
algorithms for longest-match tables. Examples include [3,
5, 7, 6, 2, 17], but there are many others. These pa-
pers strive for extremely fast lookup times while keep-
ing memory and update times small. SMALTA shares
these goals. Our view is that SMALTA is complemen-
tary to this work and provides savings in memory and
lookup times above and beyond what is provided by the
FIB lookup algorithms.

Of course, there is an enormous volume of work that
attempts to shrink the size of the RIB itself, and by ex-
tension, the FIB. This work necessarily requires changes
to router operation, either its configuration or more
typically its actual protocols. By contrast, SMALTA
requires no changes to the external behavior of routers.

Last but not the least, there are FIB suppression
methods that distribute FIB entries on various routers,
reducing FIB size within each of these routers [1]. These
methods require the routers to coordinate and are ap-
plicable only for distributed, network-wide deployment.
SMALTA does not impose any such requirement and is
capable to work on individual routers.

7. CONCLUSION AND FUTURE WORK

We have designed the first proven correct and near-
optimal incremental update scheme, SMALTA, based
on the optimal “snapshot” scheme, ORTC. Unlike the
previous work which evaluated simple FIB aggregation
methods for reduction in number of prefix entries, our
evaluation of SMALTA focused on (i) the “end-to-end”
FIB memory savings, and (ii) the reduction in lookup
times, with the popular fast FIB lookup scheme Tree
Bitmap. We used both routing tables taken from routers
in a Tier-1 provider, as well as 10 years of data from
RouteViews. We also explored the relationship between
the number of interfaces on a router and the distribu-
tion of prefixes over these interfaces.

Our results on storage show that a reasonable “rule



of thumb” for most non-customer border routers is that
Tree Bitmap memory shrinks to about one-half of its
original size, while the routing table shrinks to about
one-third of its original size. At current DMZ routing
table growth rates, this can extend the lifetime of the
installed router base by roughly four years. In addition,
SMALTA reduces the number of memory accesses for
FIB lookup by about 25%, assuming a uniform traffic
distribution. Results for typical access routers with the
majority of prefixes distributed over very few interfaces
(2 or 3) can be substantially better.
Finally, we show that the practical cost of this im-

provement is that every few hours, there is a sub-second
time period during which routing table changes to the
FIB are delayed. Our implementation of SMALTA for
Quagga shows that it can be cleanly inserted into exist-
ing routers with minimal changes to the existing code.
Our numbers for fast FIB memory aggregation im-

provements are for Tree Bitmap only. Furthermore, our
lookup time improvements assume uniform distribution
of addresses. Router vendors with other fast FIB lookup
algorithms must test SMALTA independently over real-
istic traffic patterns. While we believe that the results
in this paper provide definitive evidence of the value of
FIB aggregation, at least for Tree Bitmap, there is still
some additional work to do. Intuitively we believe that
it should be possible to process updates even while snap-
shot is running. The idea would be to first insert them
“out-of-band” into the FIB while snapshot runs (rather
than queue them as we currently do), then process the
updates into the aggregated tree, and finally swap the
FIB entries for the “out-of-band” entries. Moreover, the
impact of changes in BGP to IGP mapping on aggre-
gation in response to path changes in the local AS can
be explored further. More broadly, it has been shown
that FIB aggregation schemes that allow “whiteholing”
of non-routable prefixes can have much better aggre-
gation, but also risk forming routing loops. It would
be interesting to consider whether loops could be elim-
inated in such an approach.
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