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ABSTRACT | Communication networks need to be both adap-

tive and scalable. The last few years have seen an explosive

growth of software-defined networking (SDN) and network

function virtualization (NFV) to address this need. Both tech-

nologies help enable networking software to be decoupled

from the hardware so that software functionality is no longer

constrained by the underlying hardware and can evolve inde-

pendently. Both SDN and NFV aim to advance a software-based

approach to networking, where networking functionality is

implemented in software modules and executed on a suitable

cloud computing platform. Achieving this goal requires the

virtualization paradigm used in these services that play an

important role in the transition to software-based networks.

Consequently, the corresponding computing platforms accom-

panying the virtualization technologies need to provide the

required agility, robustness, and scalability for the services

executed. Serverless computing has recently emerged as a

new paradigm in virtualization and has already significantly

changed the economics of offloading computations to the

cloud. It is considered as a low-latency, resource-efficient,

and rapidly deployable alternative to traditional virtualization

approaches, such as those based on virtual machines and

containers. Serverless computing provides scalability and cost

reduction, without requiring any additional configuration over-

head on the part of the developer. In this paper, we explore and

survey how serverless computing technology can help building

adaptive and scalable networks and show the potential pitfalls

of doing so.
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I. I N T R O D U C T I O N

Today’s cloud environments offer the possibility of
rapidly introducing new services and adding additional
resources for existing services within seconds. In contrast,
the traditional way of using dedicated middleboxes to
deploy network services, such as firewalls, intrusion detec-
tion systems, caches, and load balancers, does not offer
the same agility as cloud computing environments. As a
result, today’s networking resources do not typically offer
the same rapid flexibility of cloud services.

To close the gap between cloud computing services
and network services and to fulfill the promise of agile
networks, the networking industry needs to undergo a
seismic technology shift. With the goal of evolving the net-
work services at a similar pace as today’s cloud computing
services, the last few years have seen an explosive increase
in interest for adopting the software-defined networking
(SDN) [1] and network function virtualization (NFV) [2]
technologies. These technologies enable networking soft-
ware to be decoupled from the hardware so that software
is no longer constrained by the hardware that delivers it
and can evolve independently. For example, SDN separates
the network’s control and forwarding planes and provides
a centralized view of the distributed network for more
efficient orchestration and automation of network services.
NFV focuses on virtualizing network services and realizing
network functions in software to accelerate innovation and
deployment. Such virtualized network functions (VNFs)
include deep packet inspection, domain name system, and
caching.
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However, despite the technical promise, the progress of
NFV and SDN adoption has been slow [3], [4]. We make
the following two observations for this slow pace. First,
VNFs are typically deployed inside the network, where
computing resources may not be as broadly available as in
a typical data center. To satisfy low-latency requirements
of various applications, VNFs are usually hosted on the
network edge, for example, on edge data centers with only
a few server racks or even with equipment put on cus-
tomer premises, such as edge routers or home gateways.
These environments have limited computing resources that
need to be managed carefully to keep the service quality
high. In fact, initial attempts to realize VNFs via virtual
machines (VMs) are being abandoned in favor of other
virtualization techniques such as containers that require
fewer resources [5].

Our second observation is that network services needed
by many new applications are set up to serve a particular
session and, thus, are short-lived and event-driven. A few
examples are transcoding tasks [6], [7], anomaly detec-
tion [8], and pluggable modules of SDN controllers. Unlike
traditional network services, whose setup time is amor-
tized over the longevity of the service, these new network
services cannot afford high startup latencies and require
the virtualization platform to facilitate fast scheduling of
tasks.

We think that the virtualization paradigm and its cor-
responding computing platform will play an important
role in the transition to software-based networks that can
match the speed of evolution in the cloud computing
environments. Based on our observations, we derive a
set of general requirements that a virtualization platform
must satisfy to effectively support the SDN- and NFV-based
services, which are listed in the following.

1) The platform should be able to match the demand
of a service by scaling up fast enough to provision
additional compute resources for the service so that
the service is able to process all incoming traffic,
even if that traffic is increasing rapidly.

2) The platform should make efficient use of the avail-
able resources. Ideally, all resources allocated to a
service should be actively used to process incom-
ing traffic, implying that services are never over-
provisioned and idle service capacity is released
immediately.

3) The platform should require minimal configuration
and management from the developers while provi-
sioning resources for the services, allowing develop-
ers to focus on application logic.

4) The platform should isolate services and their
provisioned resources from each other, such that
faults or load spikes in one service should not affect
others.

Several virtualization technologies have been developed
in the cloud computing domain that tries to meet these
requirements, such as VMs, containers, and unikernels. In
this paper, we survey the applicability of one such technol-

ogy, serverless computing, as the underlying platform for
networking services.

Serverless computing has recently emerged as a promis-
ing paradigm in virtualization, with the primary objective
of providing seamless scalability and enabling developers
to focus completely on their business logic. In serverless
computing, developers do not need to provision server
capacity in advance, because all aspects related to the
service management, including resource allocation, place-
ment, and scaling, are handled by the computing platform.
This easy management makes serverless computing a well-
suited candidate for services with varying demands.

In the last few years, serverless computing has seen
an explosion of interest, with every major cloud provider
now offering a serverless computing platform [9]–[12].
For the cloud computing industry, serverless computing
has already significantly changed the economics of offload-
ing computations to the cloud. It is considered a rapidly
deployable alternative to VMs and containers, providing
scalability and cost reduction, without requiring any addi-
tional configuration overhead on the part of the developer.

One popular realization of serverless computing is
Function-as-a-Service (FaaS). In contrast to traditional vir-
tualization techniques which require developers to bundle
their applications as servers inside VMs or containers,
FaaS allows developers to write their applications as sets
of stand-alone functions. In today’s FaaS platforms, these
functions may be invoked via HTTP requests or other
events that happen internally or externally with respect
to the platform. The platform is responsible for allocating
the resources necessary for individual function executions
according to the demand the function receives. In this
paper, we will be referring to FaaS when we use the term
serverless computing.

Conceptually, it may appear that the event-driven nature
and the finer granularity of resource provisioning (com-
pared with other virtualization techniques, such as VMs
and containers) in FaaS make it a suitable platform for
deploying adaptive and scalable network services. In this
paper, we survey how serverless computing, in general, can
help building such networks and also explore the potential
pitfalls of doing so.

In the following sections, we first provide a background
on different virtualization technologies (in Section II) such
as VMs, containers, and unikernels. Afterward, we present
(in Section III) an in-depth overview of the serverless
computing paradigm. We then explore (in Section IV) areas
where serverless computing is applicable and how it can
be employed to build adaptive network services. Finally,
we discuss (in Section V) the research challenges for
the application of serverless computing in the networking
domain.

II. B A C K G R O U N D

In this section, we briefly describe some existing virtual-
ization technologies and their properties that are relevant
to applications in the networking domain.
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A. Virtual Machines

A VM [13] simulates hardware to allow an unmodi-
fied “guest” operating system (OS) to be run in isola-
tion. A hypervisor running on the actual physical machine
(referred to as the host) manages the sharing of the phys-
ical hardware resources between VMs, allowing multiple
VMs to be run on the same host. An application running
inside a VM interacts with the guest OS, which in turn
interacts with the hardware via the hypervisor on the host.

Employing VMs is one of the most popular approaches
for deploying services on the cloud. Most cloud providers
allow the customers to provision VMs on demand and
typically charge them for how long a VM runs. Since VMs
need to boot the guest OS when they start, they typically
have long startup latencies, making them well suited for
long running services.

Following the popularity of VMs for applications running
in the cloud, VNFs have been traditionally realized as VMs.
Due to the long startup times of VMs, in order not to
reduce the service quality, VNFs are often overprovisioned
to make sure that they can meet quickly varying workloads
and demand spikes without the need for a scale-out oper-
ation. Furthermore, even when overprovisioned, applica-
tions running in VMs require continuous monitoring for
their orchestration.

B. Containers

Another popular approach in virtualization is to use con-
tainers [14], [15]. Containers allow developers to pack-
age applications with their entire runtime environment.
Unlike VMs, containers do not simulate the hardware
interface, such that applications running in the containers
directly interact with the system call interface exposed by
the underlying OS of the host. Essentially, applications
inside containers run natively on the host as processes,
with an additional layer of protection for resource
isolation [16], [17]. Although all containers on the host
share the same system kernel, they can have isolated
filesystems, networking, CPU, and memory resources.

Not having a “guest” OS, the memory footprint is much
smaller than a VM. This property also enables the contain-
ers to start an order of magnitude faster than VMs [18].
These advantages make containers a competitive and
resource-efficient alternative to VMs for realizing VNFs [5].

Similar to VMs, services deployed using containers still
need to be monitored continuously for their orchestration.
As such, they are also overprovisioned for higher levels of
load to handle sudden increases in incoming traffic.

C. Unikernels

More recently, unikernels [18]–[20] have attracted
attention from the research community. Unikernels are
tiny runtime environments where a target application is
statically linked to a minimalistic library OS, such as
MirageOS [19]. This static linking allows the application
to run directly on top of a virtual hardware abstraction,

where a hypervisor handles the resource sharing between
different unikernels. As a result, unikernels can provide
similar isolation properties such as VMs, which is stronger
than containers.

On the one hand, unikernels offer a lighter weight
alternative to VMs because of the reduction in the OS
image size and can boot up faster than the traditional
VMs and containers [18]. On the other hand, Uniker-
nels can be considered less flexible, because dynamically
adding/removing functionality requires a recompilation of
the entire unikernel image.

III. W H AT I S S E RV E R L E S S C O M P U T I N G ?

In this section, we review the general state of serverless
computing technology as well as its advantages and disad-
vantages. Since the launch of Amazon Lambda in 2014 [9],
serverless computing has attracted a significant interest
from both industry and academia as a new cloud comput-
ing paradigm. In this paradigm, application developers no
longer have to manage servers (hence, the name), provi-
sion resources, and decide where the application runs—-all
these tasks are the responsibility of the platform provider.

One popular realization of serverless computing
paradigm is the FaaS model, where the applications are
written as individual functions that can be separately man-
aged. These functions can be invoked via various types of
events (e.g., external Web requests and internal database
triggers), such that the platform allocates an ephemeral
runtime environment for the associated function(s) and
executes them. In contrast to VMs or containers, the unit
of execution in FaaS is a function. This finer granularity
enables the platform operators to schedule the execution
faster, making applications running in such a platform
more responsive to load variations. This responsiveness,
combined with the ephemerality of the execution environ-
ment, makes the applications more resource-efficient.

A. Serverless Platform Architecture

As of this writing, there are several commercial server-
less offerings, including Amazon Lambda [9], IBM Cloud
Functions [10], Microsoft Azure Functions [11], and
Google Cloud Functions [12], among others. Although
these platforms make somewhat different design choices
and tradeoffs regarding the execution environment, they
have adopted a similar overall architecture.1 This architec-
ture consists of the following main modules (Fig. 1).

1) Front End: The front end is the interface for
developers to deploy their applications onto the
serverless computing platform. It also contains
an interface, such as an application programming
interface (API) gateway [22], for users to send
REST or RPC requests to these applications and
receive responses. For scalability, multiple front-end
servers can run behind a standard load balancer.

1Conceptually, Erlang [21] has a similar message-passing and event-
driven architecture.
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Fig. 1. Serverless platform architecture.

2) Execution Engine: In many serverless computing plat-
forms, there is an execution engine on each server
that takes an incoming request as input and launches
a runtime environment (normally a container2)
with the associated function code and supporting
libraries to handle the request. When the func-
tion finishes executing (i.e., the request has been
processed), the container will be terminated. The
term referring to this practice is launching a “cold
container,” because a new container is started for
each incoming, concurrent request. This approach
inevitably incurs long startup latencies for the func-
tion execution.
To improve the function startup latency, one com-
mon practice is to reuse the launched containers by
keeping them “warm” for a configurable period of
time at the expense of occupying system resources
while idling [23], [24]. With this approach, the first
request to a function will be processed by a “cold”
container, but the subsequent requests to this func-
tion can be processed by the “warm” container. Note
that most serverless platforms allow each container
to execute only one function at a time for fault
isolation. Therefore, multiple concurrent requests
to a function are either processed in their individ-
ual “cold” containers or processed in one or more
“warm” containers in a sequential manner.

3) Message Bus and Scheduler: Generally, there is a
message bus mediating between the front end and
the execution engine. The front end publishes the
requests into the message bus. According to the
system status, a request scheduler at the message

2Alternative runtime environments (e.g., unikernels [19], [20] and
NetBricks [3]) can also be used.

bus dispatches the requests into different message
queues that are individually subscribed by execution
engines on each server. Each execution engine will
retrieve requests from its associated message queue
and launch runtime environments to process them.
Note, also, that application logic often consists of
sequences of multiple functions. A request to a func-
tion can be from the external users or internally
from the previous function in a sequence. Serverless
computing platforms normally treat these two types
of requests the same (from a load balancing perspec-
tive), and both of them are dispatched through the
message bus.

4) Storage Subsystem: A storage subsystem is needed
when there are states or data that need to per-
sist or different functions need to share the data
(especially, a big chunk of data).

B. Advantages of Serverless Computing

In the following, we list a number of major benefits of
the serverless paradigm for application developers.

1) No Server Management: Managing and provisioning
server resources (also including VMs and containers)
for applications present significant overhead and
responsibility for traditional application developers
and operators. Serverless computing alleviates this
problem by shifting this responsibility completely
to the platform and allows developers to focus on
their application logic. In doing so, the serverless
computing platform can also better leverage its
entire resource pool and optimize the application
performance.

2) Resource Efficiency and Low Cost: With serverless
computing, system resources are allocated when-
ever there is a request that needs to be processed
and deallocated when the request processing has
finished (as opposed to, for instance, a VM-based
application, which still occupies system resources
when idling). This practice minimizes the usage
of system resources and, thus, is more resource-
efficient compared with the alternatives. Develop-
ers are charged based on how much resource is
actually used by their applications. In other words,
the charged cost is associated with only the amount
of meaningful work that has been done, and there is
no cost resulting from idling resources (in contrast
to a VM-based application, which still has to pay for
unused, idling VMs).

3) Built-In Scalability: Developers only need to upload
their applications onto the serverless computing
platform that deploys these applications accord-
ing to certain requirements. Whenever there is an
incoming request, the platform instantly and pre-
cisely scales up the application to handle the request.
When the request has been handled, the platform
automatically scales down (immediately or after a
configurable period of time).
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Fig. 2. Total runtime and compute time of executing an image

processing pipeline with four functions on the existing commercial

serverless platforms. The results show the mean values with a 95%

confidence interval over ten runs, after discarding the initial (cold)

execution.

C. Disadvantages of Serverless Computing

Despite the numerous benefits of the serverless comput-
ing paradigm, there is one primary disadvantage for appli-
cations that employ serverless computing—the startup
latency per-invocation to handle a request. As described in
Section III-A, serverless computing platforms allocate an
ephemeral runtime environment (normally a container) to
execute a function when a request (i.e., an event) to invoke
that function is received. The time spent by the platform
in preparing this environment is incurred as the startup
latency for each invocation of the function.

These startup latencies could be on the order of tens
to hundreds of milliseconds or even longer depending
on the underlying virtualization technology being used
and whether the function invocation happens to incur a
“warm” or a “cold” start. For short-lived functions, with
their actual compute times less than a few hundred mil-
liseconds, these startup latencies could mean a significant
overhead. Furthermore, these startup latencies are accu-
mulated as application response delay when a sequence of
multiple functions are executed to handle a request.

The effect of startup latencies in the existing commercial
platforms can be seen in Fig. 2, which shows the over-
heads of running an image processing pipeline [25] on
these platforms. The pipeline consists of four consecutive
function executions that extract image metadata, verify
and transform it to a specific format, tag objects via image
recognition, and produce a thumbnail.

We ran this pipeline using AWS Step Functions [26],
IBM Cloud Functions with Action Sequences [10], and
Apache OpenWhisk [27], all of which provide a method
to connect multiple functions into a single service.3 We
found that the total runtime (which includes the per-
function invocation overhead) is significantly more than
the actual computation time required for the function

3As of this writing, other major serverless providers, e.g., Microsoft
and Google, do not support Python, which was used for this pipeline.

executions. This large difference indicates that the per-
function invocation latencies can collectively amount into
large overheads for applications, whose execution spans
several functions. As a result, the range of applications
well-suited for the existing serverless computing platforms
depends on their latency requirements. We discuss these
requirements further in Section IV-A1.

IV. W H E R E D O E S S E RV E R L E S S
C O M P U T I N G A P P LY ?

In this section, we explore the scenarios where serverless
computing can be considered a good fit. We first describe
this aspect from a more general perspective. We then focus
on specific applications from the networking domain.

A. Generality of Serverless Applications

While serverless computing offers several advantages for
application developers, it may not be generally applicable.
Here, we categorize the biggest factors that we believe
may have an influence on the decision whether to use
serverless computing. In Section V, we also describe some
other factors that could be considered as well.

1) Latency: One important factor developers would con-
sider when deciding whether to use serverless computing is
the latency that their applications are going to experience.
Application latency requirements are manifold and show a
broad variation over several orders of magnitude, ranging
from latencies in the range of a few milliseconds for
applications such as packet forwarding and high-frequency
trading to latencies beyond the 100-ms range for appli-
cations such as batch or asynchronous event processing
(see Fig. 3).

On the one hand, applications that do not have very
strict latency requirements, on the order of a few tens of
milliseconds or more (shown in the green region in Fig. 3),
can potentially be implemented in a serverless manner.
These include stream processing, SDN control plane func-
tions, background tasks, and Internet of Things-related
tasks. On the other hand, applications with very strict
latency budget (shown in the gray and red regions in
Fig. 3), such as online gaming and augmented reality, may
not work well on the existing serverless platforms.

For latency-sensitive applications, as described in
Section III-C, the latency overhead imposed by the server-
less platform may prove problematic for creating serverless
applications that are complex with multiple interacting
functions. As a result, developers of such applications
would be inclined to merge functions to suffer fewer
latency penalties making their applications less modu-
lar or not to use serverless computing at all. Either way,
they would not benefit from the full potential of serverless
computing. Nevertheless, recent approaches [28], [29] for
high-performance serverless computing can broaden its
use and help more developers benefit from it.
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Fig. 3. Latency requirement ranges for various applications.

2) Workload Characteristics: Another important aspect
to be considered by the developers is the workload char-
acteristics of their applications. At the high level, because
of the event-driven execution nature, serverless computing
is especially well-suited for applications that have variable
workloads.

As described in Section III-B, in the serverless computing
paradigm, the developer only supplies the function code
to the serverless platform provider, and the provider is
responsible for managing resources to execute the func-
tion. Furthermore, the platform allocates the resources
in fine increments to match the exact demand for the
function. In case the demand for a function experiences
a sudden increase (i.e., spike), the platform can quickly
create additional function execution instances to handle
the increased demand. In doing so, the serverless para-
digm is very well-suited to dynamically scale up to handle
load spikes. This approach differs from a more traditional
approach where developers must overprovision, for exam-
ple, VMs for the expected peak demand. Furthermore, with
serverless computing, the resources can be deallocated
once the demand decreases and need not to be kept idle.
As a result, serverless computing can be very resource-
efficient and economical.

From the developers’ perspective, resource efficiency
also leads to cost savings, since one need not pay for idle
resources. As a concrete example, in Fig. 4, we compare
the monthly expenditure for running a Web service on
Amazon Lambda [9] (a commercial serverless offering)

and Amazon EC2 (which allows users to rent VMs). We
assume that the service carries out a short task, such as
resizing an image, which takes roughly 100 ms to execute.
We also assume a constant workload of 1 request/second
for a month, with an increasing number of load spikes per
day, each of size 1000 requests/second lasting for 1 min.
From Fig. 4, we find that as the number of spikes per
day increases, the monthly cost for running the service on
Amazon Lambda becomes increasingly more economical
than renting VMs provisioned for peak load on Amazon
EC2.4

Despite these advantages, however, if an application has
a very high constant workload (and hence is also latency-
sensitive), provisioning VMs or containers in advance to
match this load is a better option, since the latency
overheads associated with every function invocation in
a serverless platform (see Section III-C) could adversely
affect the throughput of the application.

3) Application State: One requirement of serverless com-
puting is that each function is stateless. This requirement
entails two options for an application that wants to pre-
serve state across function executions. First, the state can
be fully encapsulated within the event message passing
between the function executions. As such, if there are
multiple functions executing in a workflow, each function
will find the full application state it needs in the event
message it receives, operate on it, and pass it on to the
next function. One such example is AWS Lambda@Edge
which only operates on the HTTP requests it receives [30].
Unfortunately, this approach may not be applicable for all
applications, especially when the application state is large.

The second option for an application to persist state
across function executions is to utilize a storage system,
such that each function will retrieve the application state
from the storage system at the beginning of its execution,
operate on it, and then save it in the storage system

Fig. 4. Cost comparison between Amazon Lambda (serverless) and

Amazon EC2 (VMs) for spiky workload. In the gray region, serverless

is 100x cheaper.

4For Amazon Lambda, we use the price for a function running
for 100 ms, with 2-GB RAM. For Amazon EC2, we use two t2.nano
instances to handle the constant-rate requests; to handle load spikes,
we use 13 m4.4xlarge instances allocated for an hour when the spike
occurs.
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for other function executions to retrieve. Many serverless
functions operate in conjunction with a storage service
using this principle. To enable easier development, server-
less computing platforms normally provide such a storage
service [9], [27], [28], either offered by the ecosystem of
the platform (e.g., AWS Lambda users usually utilize stor-
age services offered by Amazon such as S3, DynamoDB,
or Kinesis) or by explicit external requests to other storage
services (e.g., via REST calls).

However, being able to architect the application with
the above-mentioned principles may not be enough for
an application to employ serverless computing. The state
retrieval and storage operations can incur overhead, which
might affect the application performance. Applications
with multiple functions may suffer from such overhead
several times while handling a single request. Similarly,
if the state is relatively large, applications with fewer
functions but with stringent latency requirements may not
be able to benefit from serverless computing. A real-time
video encoding application, in which functions might need
to pass a high-resolution frame to the next function, is such
an example. Therefore, the ability to handle such cases
becomes important for the serverless computing platform
to broaden its applicability.

B. Applications From the Networking Domain

In this section, we describe a few specific applications
from the networking domain and explore how they could
benefit from the serverless computing paradigm.

1) Software-Defined Networking: SDN promises to make
communication networks more adaptive and easier to
manage. The primary idea is to separate the network’s con-
trol logic (the control plane) from the underlying routers
and switches that forward the traffic (the data plane).
With such a separation of the control and data planes,
network switches become simple forwarding devices and
the control logic is written in software, as network appli-
cations, running on a logically centralized controller (or
network OS), simplifying policy enforcement and network
(re)configuration and evolution [31].

Although forwarding in the network switches happens in
an event-driven fashion (i.e., packet arrival triggers route
lookup and then routing), the latency requirements of
this action cannot be met by today’s serverless computing
technologies. On the other hand, the SDN controller is a
prime candidate. A typical function of the SDN controller is
the flow management on network switches. The controller
exercises the direct control over the state in the switches
via a well-defined API. The most notable example of such
an API is OpenFlow [32], [33].

An OpenFlow switch has one or more tables of packet-
handling rules (i.e., flow table). Each rule matches a subset
of the traffic and performs certain actions (e.g., dropping,
forwarding, and modifying) on the traffic. These rules can
be installed by the controller, and depending on which
rules are installed, an OpenFlow switch can behave like

a router, switch, and firewall or perform other roles (e.g.,
load balancer, traffic shaper, and, in general, those of a
middlebox).

There are three requirements of SDN controllers that
make serverless computing a suitable alternative for
their implementation. In the following, we present these
requirements as well as how they are realized today in
detail.

a) Modularity: SDN controllers are typically designed
as a set of pluggable modules that provide basic network-
ing functionality. For example, one module can provide
management of flows, while another is responsible for
managing the topology. These modules also provide a
mechanism to add custom business logic to develop new
networking services [34]. Events coming from the south-
bound API, such as OpenFlow, trigger the execution of
these modules. For example, when a link or port change
event is detected, a message is sent by the forwarding
device to the controller. Similarly, a new packet with no
matching rules is sent to the controller.

These modules also respond to the events received
via the northbound API, which interfaces with net-
work applications running on top of the controller.
Examples of these network applications include load
balancers, firewalls, other security services, and orches-
tration/automation applications across cloud resources,
such as OpenStack [35], Puppet [36], Chef [37],
and Ansible [38]. When these applications would
like to update the controller and, in turn, the rules
in the forwarding devices, they communicate with
the controller modules that can provide the desired
functionality.

b) Parallelism: The SDN controller serves events from
both the southbound and northbound APIs. As a result,
the rate at which these events arrive can vary signifi-
cantly. A single controller may not be enough to manage
a network with a large number of data plane elements.
Consequently, a considerable effort has been dedicated
to engineering controllers as highly concurrent, multi-
threaded systems to scale up to enterprise-class networks
(e.g., NOX-MT [39], Maestro [40], Beacon [41], and
Floodlight [42]). These systems aim to increase parallelism
by minimizing synchronization needed between the mod-
ules via various mechanisms.

Furthermore, SDN controllers are also designed to be
deployed in a distributed manner, either in a centralized
cluster of nodes or a physically distributed set of nodes,
to make them scalable and failure resilient. Onix [43],
HyperFlow [44], and ONOS [45] are a few examples of
such distributed event-based controllers.

c) Isolation: Another important requirement of SDN
controllers is that they isolate faults within the pluggable
modules without affecting the controllers. On a single
node, modules operate within the same address space as
that of the controller. Therefore, the controller must ensure
that the faults both within these modules and the resources
consumed by the modules are isolated from each other.
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For many popular open-source controllers [34], [41], [42],
[46], providing such an isolated environment that also
performs well is still an open challenge [47]. An alternative
controller, Rosemary [47], proposes to isolate network
applications by starting them as processes in different
containers to prevent propagation of failures through the
SDN controller.

Serverless Computing in the SDN Domain: Being highly
event-driven, modular, and parallel, the SDN controllers
are a great fit for the serverless computing paradigm. The
modules in an SDN controller can be implemented as sep-
arate, stand-alone functions and deployed on a serverless
platform. Such an architecture would offer scalability and
fault isolation of modules out-of-the-box. These properties
mean that modules can be scaled up and down on-demand
and in a resource-efficient manner, without the operators
having to provision the resources for peak load in advance.
As such, the developers of the SDN controllers can focus on
the application logic. One caveat is that the latency require-
ments of a controller’s southbound API could be fairly
restrictive. Therefore, even though the modules interacting
with the southbound API can be written as event-driven
functions, developers may choose to implement them with
traditional approaches.

2) Network Function Virtualization: VMs have tradition-
ally been used to instantiate VNFs, but VMs tend to be
resource heavy and have long startup latencies, particu-
larly in scenarios where numerous short-running services
are needed on demand [6]. Containers [14] are increas-
ingly being deployed as a resource-efficient alternative [5]
to VMs, but they also suffer from relatively long cold
startup latencies. Consequently, containers, similar to VMs,
also need to be provisioned to higher load, to handle short-
term traffic spikes.

a) Serverless computing in the NFV domain: Serverless
computing promises to provide a resource-efficient, low
overhead alternative to VMs and containers, and can be a
good fit for the NFV architecture. Latency-sensitive, long-
running VNFs, such as firewalls, might not be a good fit
for serverless computing. However, we envision serverless
computing to be a great candidate for orchestrating VNFs
as well as for applications that require running short,
on-demand tasks operating on data collected from the
data plane (e.g., anomaly detection). In the following,
we describe the characteristics of one such anomaly detec-
tion approach [8] and motivate where serverless comput-
ing could be applied.

b) Serverless anomaly detection VNF: Kostas et al. [8]
propose a modular anomaly detection and a distributed
denial-of-service mitigation architecture that exploits the
network programmability of SDN within the context of
NFV. Fig. 5 shows the high-level architecture of this sys-
tem. Edge routers within an enterprise network convey
monitoring data to an anomaly detection and identification
component that consists of multiple stages implemented
as a set of tasks (shown in orange). When an attack is

Fig. 5. High-level design of an event-driven architecture for

network anomaly detection. It employs the invocations of different

functions for anomaly detection, victim identification, and traffic

manipulation. Boxes in orange can be deployed on a serverless

platform.

detected, an on-demand network function instructs the
edge router to forward all traffic destined to the victim to
another switch, which then filters malicious traffic while
preserving benign flows.

The computation steps required for anomaly detection
are decoupled from the data plane on the edge router via
the sFlow API [48], which randomly samples the packets
from the data plane and reports them. The detection step
is divided into a few computation tasks that are executed
in a chain, as shown in Fig. 5, each with increasing
computational requirements.

More specifically, the first step (i.e., statistics collector)
harvests statistics from the packet samples and periodically
exports them to the second component for further investi-
gation. The second component (i.e., lightweight anomaly
detection) performs coarse-grained, entropy-based anom-
aly detection on these statistics and informs the third
component if an anomaly is detected. The third compo-
nent (i.e., heavyweight anomaly detection) uses a com-
putationally heavy bidirectional count sketch algorithm to
verify the attack and then identifies the victim (i.e., victim
identification). Finally, the traffic manipulation function is
triggered to update the routing table of the edge router to
redirect traffic away from the victim.

These computation tasks required for anomaly detection
are short-lived and event-driven. We envision that such
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short-lived VNFs could be launched in a serverless man-
ner, which would make these instantiations significantly
resource-efficient and flexible.

c) Serverless media processing VNFs: The 5G Media
project [6], [7] plans to use serverless VNFs for carrying
out short tasks running in parallel with the container-
based VNFs. One such short task is “repeat clip creation”
for online spectators that are watching a live game being
played between two players in a virtual world. A spectator
may wish to replay a certain portion of the game from
a specific camera angle. This task requires collecting the
necessary buffered game play data and rendering it from
one or more camera angles desired by a specific spectator.
This replay creation task can be instantiated anytime dur-
ing the game play. Although it may not be as time-sensitive
as the game play itself, multiple instances of this task
may be needed to be created quickly to handle a sudden
increase of spectators wishing to replay a particular portion
of the game (e.g., a goal event in a soccer game). All
these properties make this task a good fit for the serverless
computing paradigm.

d) Serverless orchestration of VNFs: Serverless func-
tions could also be used to orchestrate multiple VNFs
for short-lived sessions. For example, consider a short-
lived media-intensive game between two players, where
the entire game session lasts only a few minutes [6], [7].
During that session, many VNFs need to be instantiated,
such as transcoding functions to process the media stream,
buffering functions to buffer the last few seconds of the
game for on-demand clip creation, rendering functions for
the two players and for the online spectators, and the
aforementioned repeat clip creation function that can be
instantiated any time throughout the session. The applica-
tion logic for orchestrating these VNFs can be launched in
a serverless manner, without having to provision another
VNF to execute this task.

V. D I S C U S S I O N

Despite its advantages, serverless computing still needs
to address certain challenges to improve its applicability
across the general application landscape, including the
communication services. Many of these challenges are due
to the recency of serverless computing; as application
developers and engineers continue using serverless com-
puting, they notice the lack of certain features or capabil-
ities. These issues are then addressed via additional tools.
On the other hand, some challenges are more fundamental
and need to be addressed by higher level design decisions
and architectural considerations in the serverless comput-
ing platform. Here, we discuss these challenges and point
to work that is relevant to address them.

A. New Programming Model

To take full advantage of serverless computing benefits,
applications need to be designed with a new programming
model that is based on events and asynchronous calls.

Designing an application as a group of stateless functions
requires a new mindset, in which all shared state must
be externalized. This requirement may introduce addi-
tional overhead and constraints that might not exist in
traditional, server-based application development. On the
one hand, if the functions are too fine-grained, then the
overhead of interacting with many other functions will
affect performance. On the other hand, if the functions are
too big, the flexibility about management and scaling will
be limited.

In the context of SDN controllers, serverless com-
puting is actually a good fit, since a significant effort
has already been put in to engineer SDN controllers to
be highly event-driven, modular, and concurrent (with
minimal sharing of state between the modules). For
NFVs, though they are also event-driven (reacting to
packet arrival event), serverless computing still presents
significant startup latency overheads (Section III-C) to
be generally applicable. As discussed in Section IV-B2,
serverless computing can be a great candidate for orches-
trating VNFs and also for applications that require
running on-demand short tasks that operate on data
collected from the data plane, such as for anomaly
detection [8].

B. Distributed Testing and Debugging

Another important aspect to consider when building
serverless applications is testing and debugging of the
applications. Individual functions might become easier to
test because their logic is self-contained. On the other
hand, testing and debugging applications consisting of
several functions might become more difficult for the
developers, because they do not usually have access to
the underlying physical servers running the serverless
computing platform. As a result, it becomes crucial to
the operator of the platform providing capabilities to log,
test, and debug serverless applications. Graphical user
interfaces can provide developers with an overview of the
functions and their interactions [26]. Locally running tools
can help developers test their functions before deploying
them [49], [50].

In communication services such as SDNs or NFVs, it is
possible the platform provider and developer of the func-
tions may very well be the same entities. As a result,
the developers can have access to the physical servers for
testing, debugging, and optimization purposes in addition
to the benefits of serverless applications. Even in these
cases, visibility into the platform without requiring access
to the physical servers would significantly speed up the
development process.

C. Load Balancing Versus Locality

Load balancing is beneficial for the operator of a
serverless platform to increase resource utilization by dis-
tributing the function executions to available resources.
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Unfortunately, such load balancing schemes may not neces-
sarily improve the performance for applications consisting
of several functions due to the loss of locality. For example,
frequently interacting functions may share data faster if
they were to be on the same physical server. Since load
balancing decisions are typically hidden from the devel-
oper, it is possible that load balancing strategies that do
not consider such interactions may introduce undesired
latency and network overhead by assigning the function
executions belonging to the same session to multiple
servers. For communication services, since most of the
network functions run inside the network, it is likely that
they are placed and executed, separated from each other
in a distributed network.

Such overhead might not be acceptable for latency-
sensitive communication services and will require careful
placement of VNFs by allowing developers to specify place-
ment hints. For example, in SAND [28], developers can
indicate locality requirements by grouping functions as a
single application. The platform then ensures that these
functions run within the same container, and the platform
also provides the local message-passing mechanism to
speed up communication between the colocated functions.

D. Startup Latency

As described in Section III-A, cold starts can introduce
long delays for applications and have been identified as
an important concern [51]–[53]. Warm starts, where idle
containers from the previous executions are reused, help
mitigate long tail latencies but come at a cost of reduced
resource efficiency for the platform operator. Furthermore,
even with warm starts, startup delays can accumulate to a
large value, when building applications that consist of sev-
eral functions that interact with each other (Section III-C).

For communication services, latency overhead is a signif-
icant concern, and long startup latencies will narrow down
the range of applications that can benefit immediately from
serverless computing. In the last few years, a significant
research effort has been directed toward reducing startup
latencies, which will make serverless computing a viable
option for a larger range of applications. We describe some
of these research directions in the following.

One line of work optimizes the underlying, most pop-
ularly used virtualization technique, namely, containers.
Reducing container startup times can have a direct impact
on invocation latencies, especially when a new container
needs to be launched during cold starts, as well as resource
efficiency—making cold starts fast enough would mean
that containers need not be kept idle. Slacker [54] iden-
tifies the most critical library packages during the initial
load of a container so that they can be prioritized to speed
up the start of a function execution. PipSqueak [55] and
SOCK [29] optimize the containers for serverless functions
by keeping a cache of Python interpreters that preload
libraries required by the functions. CNTR [56] reduces the
container image size by separating the tools needed for

testing and debugging from the application code so that
the container load times are improved.

Another line of work takes a different approach by
rethinking the architecture of the Serverless platform and
adapting a different type of virtualization than function-in-
a-container. With unikernels [19], [20], [57], each func-
tion is compiled into a custom system software, which is
then invoked with every request. Because the unikernel
is customized to the function requirements, the overhead
associated with unnecessary functionality is minimized to
the point where unikernel-based VMs can launch faster
than containers [18]. SAND [28] employs a fine-grained
sandboxing mechanism, whereby functions belonging to
the same application are run in the same sandbox as sep-
arate processes and new function executions are created
via OS forking, which is significantly faster than launching
a new container. Boucher et al. [58] exploit language run-
times to provide the isolation between function executions
rather than using today’s virtualization techniques.

E. Legacy Applications

A general question for the serverless computing
approach is how can legacy applications be supported.
Decomposing application logic into smaller functions may
require rearchitecting the application, which may not be
a trivial undertaking. The first thing that would be con-
sidered is whether such a redesign would make sense
economically. Although serverless computing may decrease
operational costs, companies may have already invested
in the traditional application (e.g., physical servers and
developer effort). Furthermore, as with designing new
applications, performance is critical. An open question
is how legacy applications can be decomposed and run
without sacrificing performance [59].

To be feasible and incrementally applicable, such a
redesign would lead to a hybrid architecture, whereby the
application would be decomposed into parts that can run
in serverless manner and parts that will run as it is today.
Achieving this transformation would require identifying
the application components that need high elasticity the
most, as well as ensuring that they can satisfy the server-
less computing requirements (i.e., externalized state with-
out losing performance). As described in Section IV-E2,
we foresee such a hybrid architecture to be a good starting
point for NFVs to explore serverless computing.

VI. C O N C L U S I O N

Fueled by the need to evolve network services at a
similar speed as today’s cloud computing services, both
SDN and NFV push for a fully software-based approach
to networking. Networking functionality is implemented
in software modules and executed on a suitable cloud
computing platform. The virtualization paradigm used in
the design of virtualized services and the correspond-
ing computing platforms will play an important role in
the transition to software-based networks. They need to
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provide the required agility, robustness, and scalability for
the services executed.

In this paper, we explored the possibility of using server-
less computing as a candidate platform for networking
services which meets the aforementioned requirements.
For the cloud computing industry, serverless computing has
already significantly altered the economics of offloading
computations to the cloud and is considered a rapidly
deployable (redeployable) alternative to VMs and contain-
ers, without requiring any additional configuration over-
head on developers.

For deploying networking services, we show that the
serverless computing paradigm is conceptually a great
fit for implementing SDN controllers and, practically,

serverless computing also offers the scalability and
resource isolation needed by these controllers. NFV can
also greatly benefit from serverless computing, and we
discuss, with examples, how VNFs that are not on the
latency-critical path can be implemented in a serverless
manner. Latency-critical VNFs are currently not suited for
serverless adoption, but numerous research efforts show
a promising improvement on the latency overheads of
serverless platforms. We are confident that in the near
future, serverless computing will become a viable option
for a vast range of communication services, and service
providers should seriously consider using the serverless
computing paradigm for implementing new networking
services. �
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