
Towards Statistical Queries over Distributed Private User Data

Ruichuan Chen† Alexey Reznichenko† Paul Francis† Johannes Gehrke§

†Max Planck Institute for Software Systems (MPI-SWS), Germany
§Cornell University, Ithaca, NY 14853, USA

{rchen, areznich, francis}@mpi-sws.org, johannes@cs.cornell.edu

Abstract

To maintain the privacy of individual users’ personal

data, a growing number of researchers propose storing

user data in client computers or personal data stores in

the cloud, and allowing users to tightly control the re-

lease of that data. While this allows specific applications

to use certain approved user data, it precludes broad sta-

tistical analysis of user data. Distributed differential pri-

vacy is one approach to enabling this analysis, but previ-

ous proposals are not practical in that they scale poorly,

or that they require trusted clients. This paper proposes a

design that overcomes these limitations. It places tight

bounds on the extent to which malicious clients can

distort answers, scales well, and tolerates churn among

clients. This paper presents a detailed design and analy-

sis, and gives performance results of a complete imple-

mentation based on the deployment of over 600 clients.

1 Introduction

User privacy on the Internet has become a major concern.

User data is exposed to organizations in a bewildering

and growing variety of ways. Sometimes the exposure is

known to users, as when a user makes a purchase in an

online store, or updates a profile on an online social net-

working site. But often users are unaware that their data

is being exposed, for instance by third party trackers [34]

or smart phone applications [19]. In some cases, the ex-

posure provides benefits to users, for instance in the form

of personalized recommendations. In other cases, the ex-

posure may be detrimental to users, for instance as when

Google used users’ Gmail contact data to seed its Buzz

social network [2].

There is a growing sense that this loss of privacy has

to be brought under control. ProjectVRM, for instance,

states that users must have exclusive control of their own

data, and must be able to share data selectively or volun-

tarily [4]. This “user-owned and operated” principle has

already been reflected in commercial and research efforts

on various types of user data, such as individuals’ health-

care data [3], time-series data [45, 49], and behavioral

data used for advertising [7, 31, 51]. Here, each individ-

ual user’s data is stored in a client or cloud device under

the user’s control, and is released in a controlled, limited,

or noisy fashion. It is important to be able to make sta-

tistical queries over such distributed user data while still

preserving privacy.

One general approach to supporting privacy-

preserving statistical queries is to anonymize the user

data or add noise to the user data, so that individual

users cannot be identified. Unfortunately, this approach

heavily restricts the utility of user data [43], and often

users can be de-anonymized [1, 11, 41, 46], for instance

using auxiliary information.

Another general approach, which we adopt in this pa-

per, is to add noise to the answers of queries, in such a

way that the privacy of individual users is protected. An

instance of this approach that is popular in the research

community is differential privacy [13, 14, 17]. Specif-

ically, differential privacy adds noise to the answers of

queries to statistical databases so that the querying sys-

tem cannot detect the presence or absence of a single user

or a set of users. Differential privacy provides a prov-

able foundation for measuring privacy loss regardless of

what information an adversary may possess. In spite of

the fact that an increasing number of queries can lead to

increased privacy loss, we find differential privacy to be

an attractive model both because it does provide mea-

surable privacy, and because there is substantial ongoing

effort in developing its uses [32, 38, 39, 40, 47] and un-

derstanding its limitations [15].

Most work in differential privacy assumes a central-

ized database front-ended by a trusted query module.

There is, however, no centralized database existing in

a distributed setting with individual users maintaining

their own data. Some form of distributed differential pri-

vacy is therefore required. To our knowledge, there are

a few prior designs for distributed differential privacy

in the literature [16, 30, 45, 49], none of which appear

practical in a realistic distributed environment. The first

design [16] has a per-user computational load of O(U),
where U is the number of users, making it impractical

for large systems. Following designs [45, 49] reduce the

per-user computational load from O(U) to O(1), but this

complexity assumes that key shares have been distributed

among users, using an expensive secret sharing protocol.

However, in reality users often exhibit churn (go on and

offline), and it would be very hard to execute such a pro-

tocol among a sizable population of such users. To toler-

ate churn, the recent design [30] introduces two honest-

but-curious servers to collaboratively compute the query

result. Nevertheless, these designs [30, 45, 49] all suffer

from a common attack that even a single malicious user

can substantially distort the query result.

The goal of this paper is to design, build, and mea-

sure a practical system that provides differentially pri-

vate query semantics over distributed user data. Our sys-

tem, dubbed PDDP for Practical Distributed Differen-

tial Privacy, assumes that clients are user devices under

users’ control. Therefore, they may be malicious, and

they are not always online. An analyst, who wishes to

make statistical queries over some number of clients, for-

mulates a query and transmits it to an honest-but-curious

proxy1, which further forwards it to the specified num-

ber of clients. Each client locally executes the query, and

sends its answer back to the proxy encrypted with the

analyst’s public key. In parallel, the proxy and clients,

using an efficient XOR homomorphic bit-cryptosystem,

collaboratively generate a set of additional noisy answers

that produce the required amount of differentially pri-

vate noise. The proxy then shuffles the received client an-

swers and the indistinguishable noisy answers, and for-

wards them together to the analyst. Finally, the analyst

decrypts them and computes the statistical result under

the differentially private guarantee. Altogether, this pa-

per makes the following contributions:

• It proposes what is to our knowledge the first dis-

tributed differentially private system, PDDP, that is

practical in that it can operate at large scale with

malicious clients and under churn.

• It gives a detailed privacy analysis, and presents the

implementation results of a fully functional PDDP

system with a realistic deployment of 600+ clients.

The rest of this paper is organized as follows. We

first give the security assumptions and performance goals

in §2. The system design is presented in §3. We then

provide a privacy analysis of the system in §4. This is

1We later suggest a practical approach to reduce the proxy trust (§6).

followed in §5 by the implementation description and

performance evaluation based on micro-benchmarks and

our 600+ client deployment. In §6, we sketch a design

for how to weaken the proxy trust requirement by using

trusted hardware at proxy. Finally, we give an overview

of related work in §7, and outline future work in §8.

2 Assumptions and Goals

The PDDP system consists of three components: ana-

lysts, clients, and proxy. Analysts make queries to the

system, and collect answers. Clients locally maintain

their own data, and answer queries. The proxy mediates

between the analysts and clients, and adds differentially

private noise to clients’ answers to preserve privacy.

2.1 Security Assumptions

Analysts are assumed to be potentially malicious, with

a goal of violating individual users’ privacy. An analyst

may collude with other analysts, or pretend to be multiple

distinct analysts. An analyst may take control of clients,

and attempt to use the PDDP protocol to reveal informa-

tion about those clients. (Of course, an analyst could re-

veal information about those clients outside of PDDP, but

this is the case today with for instance malware and so is

out of scope.) An analyst may deploy its own clients and

manipulate their answers. An analyst may also publish

its collected answers. Analysts can intercept and modify

all messages (e.g., an ISP posing as an analyst).

Clients are also assumed to be potentially malicious,

with a goal of distorting the statistical results learned by

analysts. Clients may generate false or illegitimate an-

swers under coordinated control (e.g., as a botnet), and

may act as Sybils [12].

The proxy is assumed to be honest but curious (HbC).

It will faithfully follow the specified protocol, but may

try to exploit additional information that can be learned

in so doing. The proxy does not collude with other com-

ponents. We discuss how we may be able to relax the

HbC assumption by using trusted hardware in §6.

It is assumed that clients have the correct public keys

for analysts and the proxy, that analysts and the proxy

have correct public keys for each other, and that the cor-

responding private keys are kept secure.

Discussion. It would be ideal if our design did not require

an HbC proxy. Indeed, some prior designs for distributed

differential privacy do not require such a proxy [16, 45,

49]. They achieve this, however, at an unacceptable cost

in a realistic distributed setting (see §1). Here we briefly

discuss the viability of an HbC proxy.

We envision a scenario whereby the analysts pay the

proxy to operate, as suggested in [24]. While this admit-

tedly leads to opportunities for collusion, we point out

2

that such relationships already exist in industry today that

normally do not result in collusion. For instance, compa-

nies pay for independent audits of their financial books or

independent safety testing of their products, even though

this may lead to negative consequences. We therefore be-

lieve that, in practice, the HbC arrangement is reasonable

for the PDDP system in most scenarios.

2.2 Client Characteristics

The client population consists of user devices, including

home and mobile devices. Clients are therefore assumed

to have the churn characteristics, and the CPU and band-

width capacities of current home and mobile devices. In

other words, clients may go offline or shutdown at any

time, and may have limited resources for computation

and data transmission.

2.3 Goals

The primary goal of our PDDP system is that the differ-

entially private guarantee is always maintained for every

honest client.

The second goal is that the maximum absolute distor-

tion in the final statistical result tallied by an analyst is

bounded by the number of malicious clients (here ignor-

ing distortion due to the differentially private noise it-

self). In other words, if z clients are malicious, then the

absolute error in the statistical result will be z or less.

Finally, the system should scale for queries to a very

large client base (millions of clients). While client churn

may result in it taking a relatively long time to produce

statistical results, this should not prevent results from be-

ing produced.

3 System Design

3.1 Differential Privacy Background

In principle, differential privacy ensures that the output

of a computation does not violate the privacy of indi-

vidual inputs. Formally, a computation F gives (ε,δ)-

differential privacy [16] if, for all datasets D1 and D2 dif-

fering on one record, and for all outputs S ⊆ Range(F):

Pr[F (D1) ∈ S]≤ exp(ε)×Pr[F (D2) ∈ S]+ δ (1)

In other words, for any possible record, the probabil-

ity that the computation F produces a given output is al-

most independent of whether or not this record is present

in the dataset.

The strong guarantees of differential privacy do not

come for free. Privacy is preserved by adding noise to

the output of a computation. Specifically, there are two

privacy parameters: ε and δ . The former parameter ε

2. Select Clients

2'. Queries

3. Answers

3'. Coins

Analyst Proxy

1. Query

4. Add Noise

Clients

5'. Decrypt

and Tabulate 5. Noisy

Answers

Figure 1: System components and basic protocol

mainly controls the tradeoff between the accuracy of a

computation and the strength of its privacy guarantee.

Higher ε represents higher accuracy but weaker privacy

guarantee, and vice versa. The latter parameter δ relaxes

the strict relative shift of probability in some cases, where

the expression (1) cannot be satisfied without a non-zero

δ [16].

Differential privacy does not make any assumptions

about the adversary. It is independent of the adversary’s

computational power and auxiliary information. Such in-

formation has been shown to break many other privacy

mechanisms [11, 41, 46].

3.2 Basic Protocol Design

3.2.1 Periodic Client-Proxy Exchange

Periodically, each online client connects to the proxy us-

ing standard session encryption (e.g., TLS) authenticated

by the proxy’s public key. On the first such connection,

the proxy assigns a unique ID to the client, which the

(honest) client uses to identify itself in subsequent con-

nections. With each connection, the client receives and

answers any pending queries from the proxy. In addition,

the client sends zero or more random “tossed coins” (i.e.,

encrypted ‘0’ or ‘1’ values) to the proxy (see §3.2.3).

The proxy maintains a complete list of clients. For

each client, it stores the client’s ID, the client’s privacy

deficit (an indication of the client’s privacy loss across

all analysts, see §3.3.2), and the timestamp of when the

client last connected. Clients that have not connected for

a long time (weeks or months) are removed from the list.

3.2.2 Query-Answer Workflow

The query-answer workflow consists of five steps, as il-

lustrated in Figure 1.

Step 1: Query Initialization (Analyst→Proxy). An an-

alyst formulates a general SQL-style query, and trans-

mits it to the proxy. Answers to a query will be provided

as a set of b buckets whose lower bounds Li and upper

bounds Ui are specified by the analyst. Different buckets

should not overlap. Additionally, the analyst also speci-

fies the number of clients c that should be queried, and a

privacy parameter ε:

3

A → P : query,{Li,Ui}b
i=1,c,ε

Here we again assume standard session encryption

to mutually authenticate proxy and analyst, and prevent

man-in-the-middle attacks from distorting messages. As

an illustrative example, the analyst’s query “what is

the distribution of ages among males?” can be formu-

lated as an SQL-style query “SELECT age FROM info

WHERE gender=‘m’” with 4 buckets, e.g., age 0∼12,

age 13∼20, age 21∼59, and age≥60.

Step 2: Query Forwarding (Proxy→Client). Once the

proxy receives the analyst’s query, it rejects the query if

c is too low or too high, or if ε exceeds the maximum

allowable privacy level. Otherwise, the proxy selects c

unique clients to which to send the query, under one of

the following two policies (selectable by the analyst):

• Select c clients randomly from the complete list of

clients, and wait for them to connect.

• Select the first c clients that connect.

Under the first policy, some of the selected clients may

not connect after a long time (many hours or days). In

this case, other random clients can be selected instead,

until answers from c or nearly c clients are collected.

Under the second policy, answers can be collected more

quickly, but with a bias towards clients that are more of-

ten online. The proxy may reject client connections that

occur more frequently than the defined connection pe-

riod. This is to prevent malicious clients from connecting

very frequently and so dominating the answer set.

After client selection, the proxy forwards the query

(with bucket information) to the c selected clients when

they connect to the proxy:

P →C : query,{Li,Ui}b
i=1

Step 3: Client Response (Client→Proxy). Each client

maintains its own data in a local database. Upon receiv-

ing a query, the client produces an answer in the form of

a ‘1’ or a ‘0’ per bucket, depending on whether or not the

answer falls within the range of that bucket. Depending

on the query, more than one bucket may contain a ‘1’.

Each per-bucket binary value is individually encrypted

using the Goldwasser-Micali (GM) bit-cryptosystem [27,

28] with the analyst’s public key. The client returns this

series of encrypted binary values {vi}b
i=1 as the actual

answer to the proxy:

C → P : {vi}b
i=1

GM is a probabilistic public-key cryptosystem. A

given input produces a different ciphertext every time it

is encrypted. GM has significant advantages in our sys-

tem. First, it is very efficient compared with other more

general public-key cryptosystems. Second, it is a single-

bit cryptosystem which encodes only two possible val-

ues, 0 and 1. This enforces a binary value in each bucket,

and prevents the use of individual encrypted values as a

covert channel.

Upon receiving a client’s answer (in the form of a se-

ries of GM-encrypted values {vi}b
i=1), the proxy checks

the legitimacy of the answer. A legitimate GM-encrypted

value must have its Jacobi symbol equal to ‘+1’, so that

the proxy can easily and efficiently detect illegitimate

values [18, 48]. If a client’s answer is legitimate (i.e.,

{vi}b
i=1 are all legitimate), the proxy stores the answer

locally; otherwise, the proxy discards this answer.

Step 4: Differentially Private Noise Addition. To pre-

serve clients’ privacy, the proxy adds differentially pri-

vate noise to each bucket. This is done by creating some

number of additional binary noise-values selected from

a binomial distribution with success probability p = 0.5.

We call these additional noise-values coins. Enough un-

biased coins must be added by the proxy to obtain the

amount of noise required by the differential privacy. It

is proven in [16] that forming a binomial distribution by

adding n unbiased coins achieves (ε,δ)-differential pri-

vacy, where

n ≥
64ln(2

δ
)

ε2
(2)

The value of ε is chosen by the analyst according to

some accuracy/privacy trade-off (see §3.1). The value of

δ may also be chosen by the analyst, but if δ ≥ 1/c, a

single client’s privacy may be compromised [33]. This

may happen in the case where the query is for an attribute

unique to a single client, e.g., its social security number.

Applying δ < 1/c to expression (2), the number of coins

for each bucket is at least:

n = ⌊64ln(2c)

ε2
⌋+ 1 (3)

The proxy maintains a pool of unbiased coins (see

§3.2.3). Note that all coins in this pool are GM-encrypted

with the analyst’s public key, and are indistinguishable

from clients’ answer values.

If a query has b buckets, then the proxy needs to use

(and remove) in total b× n coins from the pool, i.e., to

add n different coins to each bucket.

Step 5: Noisy Answers to Analyst (Proxy→Analyst).

With the noise addition, in each bucket, there are c + n

encrypted binary values, c from clients’ answers and n

from added coins. After a random delay, the proxy fur-

ther shuffles the c + n values in each bucket indepen-

dently. This prevents a client from being identified based

on the vector of 1’s and 0’s in its answer, and eliminates

the potential covert channel. The result is a set of shuffled

encrypted values {ei, j}c+n
j=1 for each i-th bucket.

4

Note that, in each bucket, adding n unbiased coins in-

troduces differentially private noise with mean equal to

n/2. As a result, for the final aggregate answer adjust-

ment, the proxy also informs the analyst of n, i.e., the

number of coins added to each bucket. Thus, the mes-

sage sent from proxy to analyst is as follows:

P → A :
{

{

ei, j

}c+n

j=1

}b

i=1
,n

After the proxy sends this message to the analyst, the

proxy adds ε and δ to the respective privacy deficits (see

§3.3.2) of each client that contributed an answer. Here, δ

can be approximately considered as 1/c (see Step 4).

Upon receiving the message, the analyst uses its pri-

vate key to decrypt all encrypted binary values, and ob-

tains a set of plaintext values {di, j}c+n
j=1 for each i-th

bucket. Finally, for each i-th bucket, the analyst sums

up all plaintext values, and then subtracts n/2 to get the

(noisy) aggregate answer ai:

ai =
c+n

∑
j=1

di, j −
n

2
(4)

In the end, the analyst obtains a noisy answer for how

many clients fall within each bucket (i.e., ai for the i-th

bucket) under the guarantee of differential privacy. Ulti-

mately, our design transforms any query into a counting

query. Though this kind of query is simple, it can poten-

tially be extended to support a large range of statistical

learning algorithms [9, 10].

3.2.3 Coin Pool Generation

In the step of differentially private noise addition (Step

4), we assume that there is a pool of unbiased coins (per

each individual analyst) maintained at the proxy. In this

section, we describe how to generate this pool of coins.

The most straightforward way would be to let the

proxy take full responsibility for generating the coins.

However, this would allow the curious proxy to know

the true noise-free aggregate answer should the ana-

lyst choose to publish its noisy aggregate answer (see

§4.3). As an alternative, the clients could generate the re-

quired unbiased coins and send them to the proxy. How-

ever, in the absence of an expensive protocol such as se-

cure multi-player computation [26, 52], malicious clients

could generate biased coins.

In our system, the proxy and clients generate the un-

biased coins collaboratively (see Figure 2). Each online

client itself periodically generates an encrypted unbiased

coin E (oc) with an analyst’s public key, and sends it to

the proxy.

Of course, malicious clients could still generate bi-

ased coins. To defend against this, the proxy does two

things. First, when the proxy receives a client-generated

3. Blindly Re-flip

and Store Coins

1. Generate Coins

Periodically

2. Coins

Proxy
Clients

Figure 2: Unbiased Coin Generation

encrypted coin E (oc), it verifies the legitimacy of the

coin by checking its Jacobi symbol [18, 48] (as in Step

3). If this fails, the coin is dropped. Second, the proxy

blindly re-flips the coin E (oc) by multiplying it with the

proxy’s locally generated unbiased coin E (op), plus a

modulo operation. This blind encrypted-coin re-flipping

is possible because of the XOR-homomorphic feature of

the GM cryptosystem we use: E (oc)× E (op) mod m =
E (oc ⊕op), where m is a part of the analyst’s public key,

and ‘⊕’ is the exclusive-or operator. This feature ensures

that the modulus product E (oc ⊕op) is an encrypted un-

biased coin, regardless of any bias in the client’s original

coin. Note that the proxy does not know the actual (de-

crypted) value of the generated unbiased coin. Once gen-

erated, the proxy stores the unbiased coin in the locally

maintained pool.

3.3 Practical Considerations

3.3.1 Utility of Aggregate Answer

The utility of the final aggregate answer learned by an an-

alyst depends directly on the amount of added noise. The

n coins added by the proxy (see expression 3), followed

by the analyst’s adjustment on the mean of n/2 (see ex-

pression 4), form a binomial distribution, which is a good

approximation to the normal distribution N(0,n/4).
The normal distribution is convenient in understand-

ing the effect of added noise on the aggregate answer.

In particular, the “68-95-99.7 rule” of the normal dis-

tribution tells us that the noisy aggregate answer falls

within one, two, and three standard deviations away from

the true noise-free answer with the probability of 68%,

95%, and 99.7%, respectively, where the standard devia-

tion σ =
√

n/2. To give a concrete example, imagine that

c = 106 clients, and a conservative privacy parameter of

ε = 1.0 [39] is chosen. Given the normal distribution,

for each bucket, there is a 68% probability that the noisy

aggregate answer is within 15.24 away from the true an-

swer, a 95% probability that it is within 30.48 away from

the true answer, and a 99.7% probability that it is within

45.72. This gives high accuracy relative to the number

of clients queried, and therefore the noisy aggregate an-

swer has high utility even under a conservative privacy

parameter setting.

5

3.3.2 Privacy Deficit vs. Privacy Budget

Under the definition of (ε,δ)-differential privacy, privacy

loss is cumulative. This has given rise to the notion of

a privacy budget [15, 17], where additional queries are

simply not allowed after the cumulative ε and δ have

reached some limit. This notion is completely imprac-

tical for our setting, where a user’s personal data may

persist for a lifetime or even longer. Whether or not to

“kill” a database after some budget is reached is a policy

decision. We prefer to treat the cumulative ε and δ as an

ongoing measure of privacy loss rather than a hard limit

(Step 5). As such, we refer to this measure as the privacy

deficit rather than a privacy budget.

The assumption of cumulativity in differential privacy

is very pessimistic because it effectively assumes that

the correlation between answers to different queries is

100%, in other words, equivalent to repeating the same

query (to the same statistical database or, in our case,

to the same set of clients). While it could in theory be

that every query is 100% correlated, in practice, many

queries may not be very correlated. Furthermore, it is

possible to informally estimate the amount of correla-

tion between queries. For instance, the query “what per-

centage of users are male?” is highly correlated with the

query “what percentage of users wear men’s shoes?”, but

(probably) poorly correlated with the query “what per-

centage of users have spaghetti as their favorite food?”.

Other factors also contribute to making queries not

very correlated. In our setting, it is normally the case that

only a fraction of clients actually answer a given query,

and the set of clients changes from query to query. In

addition, some of the data held at clients may change

over time, making correlation between earlier and later

queries less likely.

Given all the above, we can treat the privacy deficit as

a worst-case measure of privacy loss. The actual privacy

loss can be roughly estimated by taking into account the

above factors.

Practical Approach. One way to leverage the privacy

deficit would be to charge analysts accordingly, as sug-

gested in [24]. In the case of PDDP, this charge would

be a function of c× ε , i.e., the total amount of increased

privacy deficits across all queried clients. This would in-

centivize analysts to minimize the number of queries, the

number of queried clients c, and the privacy parameter ε ,

while still obtaining high-utility answers. The best strat-

egy for this depends on the application domain.

Note also that clients may locally maintain their own

privacy deficits, and are free to not answer queries if

some limit has been reached (or for any other reasons).

Enabling this requires that the query sent from proxy to

clients in Step 2 contain ε and δ (or c, if the value of δ

is based on c).

3.3.3 Non-numeric Queries

Our SQL-style queries with associated buckets allow for

a rich variety of sophisticated queries that produce nu-

meric answers. Unfortunately, not all queries that an an-

alyst may wish to make are numeric in nature. For in-

stance, for the query “which website do you visit most

often?”, a client’s answer may be one out of millions of

websites. While non-numeric, this query can be trans-

formed into a numeric query by mapping each website

an analyst wishes to learn about into a numeric value.

Unfortunately, this may produce a large number of buck-

ets. This can often be partially mitigated in practice, for

instance in this case by limiting the answer to the top

5000 most popular websites, as well as a “none of the

above” bucket.

3.3.4 Sybils and NATs

The design, as described in §3.2, is susceptible to Sybil

attacks [12], whereby a single client machine masquer-

ades as multiple clients. In PDDP, the proxy can deal

with this by limiting the number of clients selected at a

single IP address for a given query. This may have the ef-

fect of biasing answers, for instance towards home users,

where there are relatively few machines behind a NAT,

and away from business users, where many users may be

behind a NAT. This limit could be set by the analyst, thus

giving it some control over this bias at the expense of a

higher risk of answer skew by Sybil clients.

3.3.5 Scaling Considerations

To scale the PDDP proxy to millions of clients and

queries, we propose a two-tier approach. The front-

end devices at the proxy are responsible for individual

clients. They exchange messages with clients and main-

tain the per-client states such as privacy deficits and

last-connected timestamps. These devices scale easily

through the addition of more front-end devices and the

databases that support them. This is because there is no

need for interaction between these devices other than the

pairwise interaction needed for redundancy. An IP load-

balancing router can be used to steer clients to the appro-

priate front-end devices.

The back-end devices at the proxy are responsible for

individual queries. Each back-end device maintains a list

of client IDs and the corresponding front-end devices

that service these clients. This list does not need to be a

complete list of all clients. It is enough if the list is a rep-

resentative random selection of clients, but big enough

to handle queries with a large target population. A query

is submitted to a back-end device, which selects a set of

clients, and passes the query to the appropriate front-end

devices along with a list of clients to query. The back-end

6

device will collect answers and coins, and add noise. As

with front-end devices, the back-end devices do not re-

quire interaction beyond redundancy needs, and so also

scale with the addition of more devices.

4 Privacy Analysis

In this section, we provide an analysis of the privacy

properties of PDDP design given the threat assumptions

from §2.

4.1 Analyst

The analyst can influence the content of the messages

that it originates (i.e., “query,{Li,Ui}b
i=1,c,ε” in Step

1), and the messages that infected clients originate (i.e.,

“{vi}b
i=1” in Step 3).

4.1.1 Defending Against Malicious Analyst

An analyst could generate a query that attempts to reveal

an individual client’s information, for instance by speci-

fying personally identifiable information (PII) as a pred-

icate in the query. The noise added by the proxy defeats

this (Step 4), at least within the guarantees given by dif-

ferential privacy. Note that in most application domains,

it may be perfectly reasonable to disallow PII as a predi-

cate, thus giving stronger privacy protection in practice.

By enforcing a maximum limit of ε , the proxy pre-

vents an analyst from giving a large ε in the query to

minimize the added noise (Step 2). The analyst may se-

lect a small value of c in an attempt to isolate a single

client. The differentially private noise defeats this (Step

4). Alternatively, the proxy can also simply enforce a

lower bound on the value of c. In addition, the fact that

the proxy selects random clients to query prevents an

analyst from knowing which clients answered (policy 1

in Step 2). The session encryption between proxy and

clients prevents an eavesdropping analyst from knowing

which client received which query (§3.2.1). If necessary,

the proxy can add delay or chaff to the queries sent to

clients, in order to prevent an eavesdropping analyst from

identifying the queried clients by using traffic analysis to

correlate the query sent to the proxy with the subsequent

messages sent to clients.

On the assumption that clients have the proxy’s correct

public key, the session encryption prevents the analyst

from becoming a man in the middle between clients and

proxy (§3.2.1). Similarly, the analyst as an eavesdropper

cannot see the answers generated by the clients, and so

cannot trivially decrypt them and associate answers with

clients. The analyst also cannot, through traffic analysis,

correlate answers received by the proxy to those sent by

the proxy. This is because the proxy stores, delays, and

shuffles all answers and coins before sending them to the

analyst (Step 5).

4.1.2 Defending Against Clients Infected by Analyst

The analyst may try to create a covert channel between it-

self and infected clients by manipulating client answers.

However, the analyst cannot create a covert channel by

having the infected client directly embed it into the trans-

mitted ciphertext. This is because the resulting ciphertext

would not satisfy the Jacobi symbol checking made by

the proxy (Step 3), and so would be discarded. The an-

alyst also cannot create a covert channel by creating a

word from per-bucket values in the full answer {vi}b
i=1.

This is because all the answer and noise values within

each individual bucket are mixed and shuffled at the

proxy (Step 5). Note that this also prevents the identi-

fication of an individual client through correlation across

per-bucket answer values.

In the GM bit-cryptosystem, the encryption algorithm

E takes one bit w ∈ {0,1} and the public key (x,m) as

input, and outputs the ciphertext E (w) = r2xw (mod m),

where r is a random number from Z
∗
m. Without the fix

introduced at the end of this paragraph, the analyst could

create a covert channel by knowing the sequence of ran-

dom numbers r that a given client uses to produce the ci-

phertexts. This could be done for instance by having the

client use the same known random number for each an-

swer bit, or by knowing the seed for the random number

generator. This would allow the analyst to predict which

ciphertext would be produced for the subsequent ‘1’ or

‘0’ from the client, thus allowing it to isolate that client’s

answer stream from those of other clients. This covert

channel can easily be destroyed by having the proxy re-

randomize every client-produced answer value by homo-

morphically XOR-ing it with a randomly encrypted ‘0’.

This effectively scrambles the ciphertext without modi-

fying the client’s answer.

4.2 Client

An adversary may try to distort the final aggregate an-

swer by creating clients that produce incorrect answers.

Because of the use of GM bit-cryptosystem, individual

clients are strictly limited to generate only a single bit

per bucket. Therefore, the maximum absolute distortion

per bucket in the final aggregate answer is bounded by

the number of malicious clients (here ignoring distor-

tion due to the differentially private noise). This is in

contrast with previous distributed differential privacy de-

signs [30, 45, 49], where even a single malicious client

can substantially distort the final aggregate answer.

Our system thus raises the bar for the adversary by

forcing it to deploy a large number of malicious clients,

7

especially when limits are placed on the number of

clients that can answer a query from a single IP address,

as described in §3.3.4. Deploying a large number of ma-

licious clients increases the likelihood that the nature of

the client attack will be detected, thus allowing the ana-

lyst to at least know which queries are incorrect. What’s

more, even when there are a large number of malicious

clients, due to the noise added by the proxy, our system

always provides differentially private guarantees at least

for every honest client.

4.3 Proxy

There are many legitimate cases where an analyst may

wish to publish the (noisy) aggregate answers that it

learns. Because the honest-but-curious proxy does not

know the actual value of the coins that it uses to add noise

(see §3.2.3), it cannot determine the true noise-free ag-

gregate answer by subtracting the added noise from the

aggregate answer published by the analyst.

Note that it would be trivial for a dishonest proxy to

generate the required unbiased coins by itself (i.e., not

base them on a re-flipping of the client-generated coins).

This could not be detected because the correctly gener-

ated coins in any event appear as random perturbations

on the original client-generated coins. Were this dishon-

est proxy a concern in practice, we could require that

the analyst itself add differentially private noise to final

aggregate answers before publishing them. Of course,

a malicious analyst may choose not to add this noise.

Absent collusion, however, the proxy would not know

which analysts were adding noise, and which were not.

5 Implementation and Evaluation

5.1 Implementation and Deployment

We implemented a fully functional PDDP system. Fol-

lowing our design in §3.2, the implementation comprises

three basic components: client, proxy, and analyst.

The client is implemented as a Firefox add-on (as

shown in Figure 3). It consists of 9600 lines of Java

code, compiled into JavaScript using the Google Web

Toolkit. It captures users’ web browsing activities (such

as webpages visited, searches made, etc.), certain online

shopping activities (such as how often items are placed

in shopping carts), and certain ad interactions (such as

the number of ads viewed and clicked). In principle, our

Firefox add-on can be extended to capture any online

activities made by the user. All captured information is

stored in a local SQLite database using Firefox’s Storage

API, thus allowing our system to query for that informa-

tion. Every 5 minutes, the add-on connects to the proxy

Query

CoinsAnswerQuery

Online

Activity

Capturer

SQL

Execution

Engine

Coin

Generator

Crypto Engine

Online Activity Database

Answer / Coins

Client

(Firefox add-on)

Figure 3: Client implementation

to retrieve any pending queries, and return answers and

periodically generated coins.

The proxy is implemented with 3600 lines of code

as a web server running Tomcat 6.0.33. It forwards the

queries from analyst to clients, receives client-generated

answers and coins, adds differentially private noise, and

sends answers with noise back to the analyst. Proxy state

is stored in a back-end MySQL database.

The analyst is implemented in 800 lines of Java code.

After verifying the correctness of PDDP on a set of

local machines (where we have access to the local data),

we deployed PDDP on more than 600 actual clients. This

deployment allows us to make queries to exercise and test

our system.

5.2 Comparison: An Alternative Design

In our evaluation, we compare PDDP with a strawman

design that is more straightforward and might at first

glance appear to be a natural choice. Indeed, this was one

of the designs that we initially focused on. Like [45], it

exploits the additive homomorphism of the Paillier cryp-

tosystem [42]. Like PDDP, however, it uses an honest-

but-curious proxy in order to avoid expensive protocols

like the distributed key distribution in [45].

In the “Paillier-based” design, each queried client re-

turns an encrypted 1 or 0 in each bucket. Due to Paillier’s

additive homomorphism, the proxy can directly sum up

all clients’ encrypted answers to get the encrypted total

sum for each bucket. The proxy adds the required differ-

entially private noise to each bucket to generate the en-

crypted noisy aggregate answer, and then forwards this

answer to the analyst. The analyst uses its private key to

decrypt the noisy aggregate answer.

Like [45], this basic design suffers from the problem

that a single malicious client can provide an answer value

other than 1 or 0 in each bucket to substantially distort the

8

Table 1: Performance at client (sustained crypto operations per second)

Encryption ZKP Generation

Firefox Chrome Smartphone Firefox Chrome Smartphone

PDDP System 2157.96 22773.86 808.87 – – –

Paillier-based System 0.59 7.79 0.27 0.17 2.34 0.08

Table 2: Performance at proxy and analyst (sustained crypto operations per second). Homomorphic operations are

XOR in the PDDP system, and addition in the Paillier-based system.

Encryption Decryption Homomorphic Op ZKP Generation ZKP Verification

PDDP System 15323.32 6601.10 123609.39 – –

Paillier-based System 62.76 63.41 34188.03 18.70 15.58

aggregate answer without detection. To overcome this

problem, we used non-interactive zero-knowledge proofs

(ZKP) [8] based on the Fiat-Shamir heuristic [23] to en-

sure that all encrypted answer values are either 1 or 0.

The resulting design is almost apples-to-apples compara-

ble with PDDP. The primary difference, however, is that

in the Paillier-based design, the proxy knows exactly how

much noise has been added, and therefore knows the true

aggregate answer in those cases where the analyst pub-

lishes its noisy aggregate answer (see §4.3).

5.3 Evaluation

5.3.1 Computational Overhead

A major concern in the performance of distributed dif-

ferentially private systems is the overhead of the asym-

metric crypto operations. In this section, we measure the

crypto performance of PDDP, as well as compare it with

the Paillier-based system outlined in §5.2.

To generate an answer to a received query, each client

needs to encrypt a binary value for each bucket, us-

ing the GM cryptosystem in PDDP or using the Pail-

lier cryptosystem in a Paillier-based system. We measure

the sustained rate at which three different clients can do

these crypto operations: a Firefox browser and a Chrome

browser on a desktop workstation running Linux 2.6.32

with Intel dual core 3GHz, and a WebKit browser on a

smartphone running Android 2.2 with a 1GHz proces-

sor. The results, with a 1024-bit key length, are given

in Table 1. The PDDP crypto operations are very fast.

Even the smartphone can execute over 800 encryptions

per second. This suggests that crypto is not a bottle-

neck in PDDP’s client implementation, though in prac-

tice these operations should be run in the background

for queries with many buckets. By contrast, the Paillier-

based clients are prohibitively slow: 8 encryptions per

second with Chrome, and less than one per second for the

smartphone. If zero-knowledge proofs (ZKPs) are used

to ensure that clients produce answers with only 1’s and

0’s (see §5.2), Paillier-based clients are even slower.

At the proxy, the PDDP system needs to perform

GM crypto-operations to transform periodically client-

generated coins into unbiased coins — one (offline) en-

cryption and one homomorphic XOR for one unbiased

coin. Moreover, the PDDP proxy needs to perform the

Jacobi symbol checking on received coins and answer

values. This checking cost is the same as (or faster than)

the cost of GM decryption. Table 2, also with a 1024-

bit key length, shows that all these crypto operations are

quite efficient in PDDP. In a Paillier-based system, the

proxy needs to first verify all clients’ submitted ZKPs

— one ZKP for each client answer’s each bucket. The

ZKP verification is very expensive as shown in Table 2.

Furthermore, the proxy in a Paillier-based system needs

to homomorphically sum up all client answers for each

bucket, and then add locally generated differentially pri-

vate noise to each per-bucket total sum.

To give a concrete example, we assume a 10-bucket

query sent to 1M clients, with a conservative privacy pa-

rameter of ε = 1.0 [39]. Based on the results in Table 2,

the PDDP proxy would require less than 1 CPU-second

for the GM crypto-operations, and less than 30 CPU-

minutes for the Jacobi symbol checking. The Paillier-

based proxy, by contrast, would require roughly 5 CPU-

minutes for the homomorphic additions, and roughly 1

CPU-week for the zero-knowledge proof verifications.

At the analyst, while the PDDP system needs to de-

crypt all encrypted values (i.e., all client answers plus

coins) within each bucket, the Paillier-based system only

needs to decrypt one encrypted value within each bucket.

The computational overhead at the PDDP analyst is

higher than at the Paillier-based analyst. Nevertheless,

the overhead is very reasonable considering the effi-

ciency of PDDP’s crypto operations.

5.3.2 Bandwidth and Storage Overhead

In both PDDP and Paillier-based systems, a client needs

to transmit an encrypted answer value for each bucket. A

9

PDDP client also needs to transmit a periodically gener-

ated coin to the proxy, while a Paillier-based client needs

to transmit a ZKP for each bucket of an answer. The

bandwidth requirements for these are modest: on the or-

der of a few kilobytes.

The PDDP proxy needs to store all queried clients’ en-

crypted answer values for each bucket. Assuming a key

length of 1024 bits, the storage for a 10-bucket query

over 1 million clients is about 1.2GB. These answers can

be stored on a hard-drive. The PDDP proxy also needs

to receive, re-flip, and store client-generated coins. The

required number of coins, however, is only a small frac-

tion of the number of answer values. As an example, for

the 10-bucket, 1M-client, ε = 1.0 query, only 9290 coins

are required (929 per bucket). Finally, the answers and

coins will be transmitted to the analyst (roughly 1.2GB),

which stores and decrypts them. Overall, the storage and

bandwidth requirements for PDDP proxy are quite rea-

sonable. Recall that it is straightforward to further scale

the system by adding proxy devices (see §3.3.5).

Note that the Paillier-based proxy and analyst have

minimal storage and bandwidth requirements because

they need to store and transmit only one aggregate an-

swer value per bucket. Each time the Paillier-based proxy

receives an answer from a client, it adds the per-bucket

answer value to the corresponding bucket of the locally

maintained aggregate answer.

In summary, the PDDP system overhead is within very

reasonable limits for all system components. Compared

with a Paillier-based system, the PDDP system trades-off

moderate and affordable bandwidth and storage overhead

against unacceptable computational overhead.

5.3.3 Querying the Client Deployment

Before we deployed PDDP at scale, we first tested it

on a set of local machines. Since we had access to the

data on the local machines, we knew the true answers of

the clients running on those local machines. In so do-

ing, we were able to verify the correctness of PDDP.

We then deployed PDDP on more than 600 clients taken

from “friends and family” as well as Amazon Mechani-

cal Turk. This deployment allowed us to make queries to

exercise and test the PDDP system.

Figure 4 gives a histogram of the number of connec-

tions received from clients that established at least one

connection on Sep. 26. While the Firefox browser is ac-

tive, clients make connections every 5 minutes. We see

that only one or two percent of client browsers were run-

ning the full 24 hours. Almost half of the clients made

20 or fewer connections, representing a browser uptime

of less than 2 hours in 24. This suggests that it could

easily take several days to complete a query over nearly

all of a set of clients. It also suggests that an approach

0 50 100 150 200 250 300

0

5

10

15

20

25

30

35

 26 Sep 2011

 P
e

rc
e

n
ta

g
e

 o
f

C
lie

n
ts

 (
%

)

 Number of Connections

Figure 4: Number of connections received from clients

on Sep. 26, 2011

that requires that clients are continuously available, as

with [45], will not work in our setting.

To further test our system, we executed a number of

PDDP queries over our deployed client base. Each query

sets c = 250 (out of over 600 clients) and ε = 5.0. Each

query lasts 24 hours, and we select clients as they connect

until c = 250 unique clients are queried or 24 hours ex-

pires, whichever comes first. Finally, each query covers

statistics gathered over a 24 hour period — midnight-to-

midnight of the day specified in the query in the client’s

local time.

Note that what we report here are the noisy aggregate

answers from our deployment. To preserve users’ pri-

vacy, PDDP didn’t and indeed shouldn’t output the true

noise-free aggregate answers. This is our key premise

and motivation — learn statistical results without know-

ing users’ true answers. Nevertheless, our experimental

parameter settings (i.e., c = 250 and ε = 5.0) result in

16 coins per bucket, and ensure that a per-bucket aggre-

gate answer is within plus or minus 2, 4, and 6 of the

true noise-free aggregate answer, with the probability of

68%, 95%, and 99.7%, respectively (see §3.3.1).

We started by issuing the simple query “how many

webpages did a client visit per day?” over five consec-

utive days. We specified 8 buckets as shown in Table 3.

Between 176 and 230 answers were gathered each day

(including noise). Since each client supplies a count in

a single bucket only, this directly reflects (noisily) the

number of unique clients that replied in 24 hours. The

results in Table 3 show that the requested information

can usefully be gathered through the PDDP system. For

instance, we see that a large number of clients show very

little activity (0∼10 webpages visited). What’s more, the

number of these low-activity clients was greater during

the weekend (Sep. 24 and 25). On the other hand, a

10

Table 3: Number of webpages visited per day (displayed as noisy client counts within each bucket)

0∼10 11∼20 21∼50 51∼100 101∼200 201∼500 501∼1000 >1000
Total

pages pages pages pages pages pages pages pages

24 Sep 2011 73 1 10 14 29 33 10 6 176

25 Sep 2011 115 3 14 11 30 43 17 -3 230

26 Sep 2011 61 20 16 21 44 48 12 3 225

27 Sep 2011 49 8 15 17 25 44 20 2 180

28 Sep 2011 56 7 8 19 27 45 16 3 181

Table 4: Five different queries towards clients’ activities on Sep. 29, 2011 (displayed as noisy client counts within each

bucket)

0 1∼10 11∼20 21∼50 51∼100 101∼200 201∼500 501∼1000 >1000 Total

Q1 45 11 5 18 23 24 37 18 4 185

Q2 46 40 28 45 19 7 0 0 -3 182

Q3 43 17 9 23 24 30 33 2 2 183

Q4 56 32 20 28 31 8 6 -1 2 182

Q5 77 28 17 25 8 16 6 5 1 183

Q1: How many webpages visited? Q4: How many searches made?

Q2: How many unique websites visited? Q5: How many Google ads shown?

Q3: How many visited webpages on a user’s top 3 favorite websites?

substantial number of clients visit between 100 and 500

webpages per day. Note that in one case the added noise

produces a negative count. This poses no privacy risk; if

desired, an analyst can safely replace all negative counts

with zeros without privacy loss [33].

We additionally issued five queries towards clients’ ac-

tivities on Sep. 29, as listed in Table 4. We also added

a ‘0’ bucket in order to distinguish between truly idle

clients and low-activity clients. Once again, this set of

queries shows that it is possible to gather meaningful

noisy data from even a relatively small population of

clients. For instance, we see from query Q1 that indeed

a large fraction of low-activity browsers are idle (45

clients in ‘0’ bucket). We see from query Q2 that a rela-

tively large number of users (40 of 136 non-idle clients)

visited a small number of unique websites (between 1

and 10). Moreover, given the rough similarity between

the results of queries Q1 and Q3, it appears that most

browsing takes place over users’ top 3 favorite websites.

Many additional observations can be made; for instance,

from queries Q4 and Q5 we see that search is often used

(around half of the clients made 11∼100 searches), and

that Google ads are shown relatively often.

6 Malicious Proxy

In this section, we sketch out how we may weaken proxy

trust requirements through the use of trusted hardware

such as the Trusted Platform Module (TPM) or the IBM

4758 cryptographic coprocessor [44]. In particular, we

assume that the proxy is malicious in that it may try to

violate the privacy of individual clients, and is willing to

collude with analysts (or pose as an analyst). On the other

hand, we assume that the proxy is unwilling or unable to

physically tamper with the hardware, including placing

probes on the system bus in order to record system op-

erations, for instance because there is a threat of random

inspections from a third party.

The basic idea is that the proxy runs an executable

which has been verified by a trusted third party to oper-

ate correctly as a proxy. This executable is then remotely

attested by the clients, as described in [44].

There are two attacks that we need to defend against.

First, the proxy may try to de-anonymize a client by as-

sociating a given answer with the client’s IP address,

and conveying this association to the analyst. Second, the

proxy may try to avoid adding noise to the answers, thus

violating differential privacy. We assume that the proxy

operator is able to launch a reboot attack on the proxy

hardware. In this attack, after a client attests the exe-

cutable and transmits its answer to the proxy, the proxy

is rebooted with a malicious executable which carries out

one of the above attacks. Prior work has shown how to

prevent a reboot attack once the client maintains a secure

channel with the proxy after attestation [25, 37]. In our

scenario, however, a client may drop the secure channel

after it has supplied its answer (Step 3) but before the

proxy transmits the answer to the analyst (Step 5).

11

In our design, we assume that after a client connects to

the proxy, the query is received and answered, as well as

any coins are delivered, within the same attested secure

channel. The proxy operates as follows:

• When the proxy receives a coin from a client, it re-

flips the coin and stores it into the unbiased coin

pool in memory. Upon booting, previous stored

coins will be lost and the pool will be empty. There-

fore, the proxy will have to gather a modest number

of coins (some thousands) before it can start han-

dling queries from analysts.

• When the proxy receives a query from the analyst,

it immediately reads the required number of coins

from the unbiased coin pool, and places them in a

newly initialized linked list or similar data structure.

If there are not enough unbiased coins remaining in

the pool, the proxy waits until enough coins have

been generated.

• When the proxy receives a (periodic) connect re-

quest from a client with a pending query, it sends

the query to the client and receives an answer. The

answer is placed in the linked list at a random lo-

cation, and no association with the client answer is

established.

• When enough client answers have been received, all

items in the linked list (answers and coins mixed

together) are transmitted to the analyst.

Analysis. By requiring that the proxy read the coins be-

fore receiving any client answers, we ensure that even

a single client answer is adequately mixed with noise.

This prevents a client de-anonymization attack whereby

the proxy is rebooted with a malicious executable after

only a single answer is received, thus allowing the mali-

cious executable to link the received answer to the client

by recording network activity. This also prevents the no-

noise attack, by ensuring that noise is mixed in from the

very beginning, and cannot be distinguished from client

answers. Further work is required to fully analyze this

approach to accommodating a malicious proxy.

7 Related Work

To preserve user privacy, early approaches like

anonymization sanitize the user data by removing well-

known personally identifiable information (PII), e.g.,

name, gender, birthday, social security number, ZIP

code, etc. These approaches not only heavily restrict the

utility of the user data [43], but ultimately cannot ef-

fectively protect user privacy [11, 41, 46]. In a well-

publicized example of this, an individual user was iden-

tified from AOL’s anonymized search logs [1]. A num-

ber of privacy-preserving approaches have been pro-

posed [5, 6, 21, 22, 35, 36, 50], discussed in the follow-

ing.

One general approach [5, 6] is to randomize user data

by adding random distortion values drawn independently

from some known distribution such as a uniform distri-

bution or a normal distribution. An analyst can collect

the distorted user data and reconstruct the distribution of

the original data using for instance the expectation max-

imization (EM) algorithm [5]. However, [22] indicates

that such simple randomization is potentially vulnera-

ble to privacy breaches. Evfimievski et al. then proposed

a class of new randomization operators [22], and used

them to limit the privacy breaches [21].

k-anonymity [50] ensures that each individual is indis-

tinguishable from at least k−1 other individuals with re-

spect to certain sensitive attributes, thus individuals can-

not be uniquely identified. While k-anonymity protects

against identity disclosure, it does not prevent attribute

disclosure if there is little diversity in these sensitive at-

tributes. To address this problem, l-diversity [36] was

proposed which requires that there exist at least l well-

represented values for each sensitive attribute. Recently,

[35] indicated that l-diversity may not be necessary, and

it is also insufficient to prevent attribute disclosure. To

solve the problems of both k-anonymity and l-diversity,

[35] further proposed t-closeness which requires that the

distribution of a sensitive attribute in any “equivalence

class” is close to the overall distribution of the attribute,

and the distance between the two distributions is no more

than a threshold t.

Many of these approaches, however, only provide syn-

tactic guarantees on the privacy, and impose constraints

of one sort or another. Differential privacy [13, 14, 17] is

considered stronger than previous approaches because it

provides a provable guarantee that it is hard to detect the

presence or absence of any individual records, as already

discussed in §3.1. Differential privacy does not make any

assumptions about the adversary. It is independent of the

adversary’s computational power and auxiliary informa-

tion. However, original differential privacy mechanisms

were not designed to support a distributed environment.

In theory, secure multi-player computation [26, 52]

could be used to emulate differential privacy in a dis-

tributed manner. It would be, however, highly expensive.

To our knowledge, there are four previous designs for

distributed differential privacy [16, 30, 45, 49]. None of

them are realistically practical in a large-scale distributed

setting.

The first distributed differential privacy design was

proposed by Dwork et al. in [16]. It is something of a

cryptographic tour de force, variously exploiting Byzan-

tine agreement, distributed coin flipping, verifiable se-

12

cret sharing, secure function evaluation, and randomness

extractor. However, its computational load per user is

O(U), where U is the number of users, making it im-

practical for a large-scale setting.

To reduce this complexity, Rastogi and Nath in [45]

designed a two-round protocol based on the threshold

Paillier cryptosystem, and Shi et al. in [49] designed

a single-round protocol based on the decisional Diffie-

Hellman assumption. Both designs [45, 49] achieve dis-

tributed differential privacy while reducing the compu-

tational load per user from O(U) to O(1). However,

their distributed key distribution protocols cannot work

at large-scale under churn. To solve this problem, Götz

and Nath in [30] utilized two honest-but-curious servers

to collaboratively collect users’ noisy answers and com-

pute the final aggregate result. Nevertheless, in all of

these designs [30, 45, 49], even a single malicious user

can substantially distort the final result without detection.

8 Conclusion and Future Work

In presenting a practical system, PDDP, that supports sta-

tistical queries over distributed private user data, this pa-

per takes a first step towards practically mining that data

while preserving privacy. Still, there is a gap between

the utility of a central database and that of PDDP. While

one might be willing to give up some utility in exchange

for privacy, it is important to maximize the utility of dis-

tributed private user data.

Previous work shows that it is possible to support var-

ious statistical learning algorithms through a differen-

tially private interface [9, 10]. These algorithms, how-

ever, require a sequence of queries to a given database

(or, in our case, a given set of clients). It is not clear

whether this is practical over PDDP. While in princi-

pal the proxy may retain state about which set of clients

should receive a sequence of queries, in practice some

fraction of these clients will become unavailable tem-

porarily or permanently during the course of the queries.

One avenue of future work is to understand the impact of

this on the utility of the data as well as the time it takes

to run these algorithms.

A second area of future work concerns the scalabil-

ity of non-numeric queries (§3.3.3). A brute-force ap-

proach of assigning a numeric value to every possible

non-numeric answer does not scale for certain queries,

e.g., “what is the most frequent search?”. One possible

approach might be to use invertible Bloom filters [20, 29]

to map a large number of possible non-numeric answers

into a relatively small number of buckets, at some loss

of fidelity. However, we need to understand the trade-off

between utility and scalability. An interesting question is

whether this loss of fidelity itself can be exploited as a

privacy mechanism.

More broadly, we need to gain experience with PDDP.

Towards this end, we plan to use PDDP to gather sta-

tistical data for a large-scale experiment with the Privad

privacy-preserving advertising system [31]. By “eating

our own dog food”, we can learn first-hand the limita-

tions of PDDP in gathering meaningful data from clients.

While we believe that it is reasonable in practice to re-

quire an honest-but-curious proxy, it would obviously be

better not to. One avenue of future work is to nail down

the design and security properties of a TPM-based ap-

proach as sketched in §6. Ultimately, a challenging open

problem is to design a system that practically provides

differentially private statistical queries over distributed

data without requiring a trusted third party.

Finally, the question of measuring actual privacy loss

(versus worst-case privacy loss) is extremely important

for differential privacy, not only in a distributed setting

but generally. While we assume that this necessarily in-

volves incorporating domain-specific information such

as user sensitivity and adversarial knowledge, and there-

fore gives up some of the rigor of differential privacy, we

believe it is important to make progress here in order to

make differential privacy more practical.

9 Acknowledgments

We are grateful to the anonymous reviewers and our

shepherd, Nickolai Zeldovich, for their insightful com-

ments. We also thank Rose Hoberman, Aniket Kate,

Stevens Le Blond, and Nan Zheng for their valuable

feedback on drafts of this work. Finally, we would like

to thank the volunteers for anonymously helping us ex-

ercise our system.

References

[1] A Face Is Exposed for AOL Searcher No. 4417749. http://

www.nytimes.com/2006/08/09/technology/09aol.html.

[2] FTC Charges Deceptive Privacy Practices in Google’s Rollout of

Its Buzz Social Network. http://www.ftc.gov/opa/2011/

03/google.shtm.

[3] Microsoft HealthVault. http://www.microsoft.com/en-us/

healthvault/.

[4] Project VRM. http://cyber.law.harvard.edu/

projectvrm/Main_Page.

[5] AGRAWAL, D., AND AGGARWAL, C. C. On the Design and

Quantification of Privacy Preserving Data Mining Algorithms. In

PODS (2001).

[6] AGRAWAL, R., AND SRIKANT, R. Privacy-Preserving Data Min-

ing. In SIGMOD Conference (2000), pp. 439–450.

[7] BACKES, M., KATE, A., MAFFEI, M., AND PECINA, K.

ObliviAd: Provably Secure and Practical Online Behavioral Ad-

vertising. In IEEE Symposium on Security and Privacy (2012).

[8] BAUDRON, O., FOUQUE, P.-A., POINTCHEVAL, D., STERN, J.,

AND POUPARD, G. Practical multi-candidate election system. In

PODC (2001), pp. 274–283.

13

[9] BLUM, A., DWORK, C., MCSHERRY, F., AND NISSIM, K. Prac-

tical privacy: the SuLQ framework. In PODS (2005), pp. 128–

138.

[10] BLUM, A., LIGETT, K., AND ROTH, A. A learning theory

approach to non-interactive database privacy. In STOC (2008),

pp. 609–618.

[11] COULL, S. E., WRIGHT, C. V., MONROSE, F., COLLINS, M. P.,

AND REITER, M. K. Playing Devil’s Advocate: Inferring Sen-

sitive Information from Anonymized Network Traces. In NDSS

(2007).

[12] DOUCEUR, J. R. The Sybil Attack. In IPTPS (2002), pp. 251–

260.

[13] DWORK, C. Differential Privacy. In ICALP (2006), pp. 1–12.

[14] DWORK, C. Differential Privacy: A Survey of Results. In TAMC

(2008), pp. 1–19.

[15] DWORK, C. A firm foundation for private data analysis. Com-

mun. ACM 54, 1 (2011), 86–95.

[16] DWORK, C., KENTHAPADI, K., MCSHERRY, F., MIRONOV, I.,

AND NAOR, M. Our Data, Ourselves: Privacy Via Distributed

Noise Generation. In EUROCRYPT (2006), pp. 486–503.

[17] DWORK, C., MCSHERRY, F., NISSIM, K., AND SMITH, A. Cal-

ibrating Noise to Sensitivity in Private Data Analysis. In TCC

(2006), pp. 265–284.

[18] EIKENBERRY, S. M., AND SORENSON, J. Efficient Algorithms

for Computing the Jacobi Symbol. In ANTS (1996), pp. 225–239.

[19] ENCK, W., GILBERT, P., GON CHUN, B., COX, L. P., JUNG, J.,

MCDANIEL, P., AND SHETH, A. TaintDroid: An Information-

Flow Tracking System for Realtime Privacy Monitoring on

Smartphones. In OSDI (2010), pp. 393–407.

[20] EPPSTEIN, D., AND GOODRICH, M. T. Straggler Identification

in Round-Trip Data Streams via Newton’s Identities and Invert-

ible Bloom Filters. IEEE Trans. Knowl. Data Eng. 23, 2 (2011),

297–306.

[21] EVFIMIEVSKI, A. V., GEHRKE, J., AND SRIKANT, R. Limiting

privacy breaches in privacy preserving data mining. In PODS

(2003), pp. 211–222.

[22] EVFIMIEVSKI, A. V., SRIKANT, R., AGRAWAL, R., AND

GEHRKE, J. Privacy preserving mining of association rules. In

KDD (2002), pp. 217–228.

[23] FIAT, A., AND SHAMIR, A. How to Prove Yourself: Practical

Solutions to Identification and Signature Problems. In CRYPTO

(1986), pp. 186–194.

[24] GHOSH, A., AND ROTH, A. Selling privacy at auction. In ACM

Conference on Electronic Commerce (2011), pp. 199–208.

[25] GOLDMAN, K., PEREZ, R., AND SAILER, R. Linking remote

attestation to secure tunnel endpoints. In STC (2006), pp. 21–24.

[26] GOLDREICH, O., MICALI, S., AND WIGDERSON, A. How to

Play any Mental Game or A Completeness Theorem for Protocols

with Honest Majority. In STOC (1987), pp. 218–229.

[27] GOLDWASSER, S., AND MICALI, S. Probabilistic Encryption

and How to Play Mental Poker Keeping Secret All Partial Infor-

mation. In STOC (1982), pp. 365–377.

[28] GOLDWASSER, S., AND MICALI, S. Probabilistic Encryption.

J. Comput. Syst. Sci. 28, 2 (1984), 270–299.

[29] GOODRICH, M. T., AND MITZENMACHER, M. Invertible

Bloom Lookup Tables. CoRR abs/1101.2245 (2011).

[30] GÖTZ, M., AND NATH, S. Privacy-Aware Personalization for

Mobile Advertising. In Microsoft Research Technical Report

MSR-TR-2011-92 (2011).

[31] GUHA, S., CHENG, B., AND FRANCIS, P. Privad: Practical Pri-

vacy in Online Advertising. In NSDI (2011).

[32] HAEBERLEN, A., PIERCE, B. C., AND NARAYAN, A. Differen-

tial privacy under fire. In USENIX Security Symposium (2011).

[33] KOROLOVA, A., KENTHAPADI, K., MISHRA, N., AND

NTOULAS, A. Releasing search queries and clicks privately. In

WWW (2009), pp. 171–180.

[34] KRISHNAMURTHY, B., AND WILLS, C. E. On the leakage of

personally identifiable information via online social networks. In

WOSN (2009), pp. 7–12.

[35] LI, N., LI, T., AND VENKATASUBRAMANIAN, S. t-Closeness:

Privacy Beyond k-Anonymity and l-Diversity. In ICDE (2007),

pp. 106–115.

[36] MACHANAVAJJHALA, A., GEHRKE, J., KIFER, D., AND

VENKITASUBRAMANIAM, M. l-Diversity: Privacy Beyond k-

Anonymity. In ICDE (2006).

[37] MCCUNE, J. M., PARNO, B., PERRIG, A., REITER, M. K.,

AND ISOZAKI, H. Flicker: an execution infrastructure for tcb

minimization. In EuroSys (2008), pp. 315–328.

[38] MCSHERRY, F. Privacy integrated queries: an extensible plat-

form for privacy-preserving data analysis. In SIGMOD Confer-

ence (2009), pp. 19–30.

[39] MCSHERRY, F., AND MAHAJAN, R. Differentially-private net-

work trace analysis. In SIGCOMM (2010), pp. 123–134.

[40] MCSHERRY, F., AND MIRONOV, I. Differentially Private Rec-

ommender Systems: Building Privacy into the Netflix Prize Con-

tenders. In KDD (2009), pp. 627–636.

[41] NARAYANAN, A., AND SHMATIKOV, V. Robust De-

anonymization of Large Sparse Datasets. In IEEE Symposium

on Security and Privacy (2008), pp. 111–125.

[42] PAILLIER, P. Public-Key Cryptosystems Based on Composite

Degree Residuosity Classes. In EUROCRYPT (1999), pp. 223–

238.

[43] PANG, R., ALLMAN, M., PAXSON, V., AND LEE, J. The devil

and packet trace anonymization. Computer Communication Re-

view 36, 1 (2006), 29–38.

[44] PARNO, B., MCCUNE, J. M., AND PERRIG, A. Bootstrapping

Trust in Commodity Computers. In IEEE Symposium on Security

and Privacy (2010), pp. 414–429.

[45] RASTOGI, V., AND NATH, S. Differentially private aggregation

of distributed time-series with transformation and encryption. In

SIGMOD Conference (2010), pp. 735–746.

[46] RIBEIRO, B. F., CHEN, W., MIKLAU, G., AND TOWSLEY, D. F.

Analyzing Privacy in Enterprise Packet Trace Anonymization. In

NDSS (2008).

[47] ROY, I., SETTY, S. T. V., KILZER, A., SHMATIKOV, V., AND

WITCHEL, E. Airavat: Security and Privacy for MapReduce. In

NSDI (2010), pp. 297–312.

[48] SHALLIT, J., AND SORENSON, J. A binary algorithm for the

Jacobi symbol. ACM SIGSAM Bulletin 27, 1 (1993), 4–11.

[49] SHI, E., CHAN, T.-H. H., RIEFFEL, E. G., CHOW, R., AND

SONG, D. Privacy-Preserving Aggregation of Time-Series Data.

In NDSS (2011).

[50] SWEENEY, L. k-Anonymity: A Model for Protecting Privacy.

International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems 10, 5 (2002), 557–570.

[51] TOUBIANA, V., NARAYANAN, A., BONEH, D., NISSENBAUM,

H., AND BAROCAS, S. Adnostic: Privacy Preserving Targeted

Advertising. In NDSS (2010).

[52] YAO, A. C.-C. Protocols for Secure Computations. In FOCS

(1982), pp. 160–164.

14

