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ABSTRACT
Today, websites commonly use third party web analytics ser-
vices to obtain aggregate information about users that visit
their sites. This information includes demographics and vis-
its to other sites as well as user behavior within their own
sites. Unfortunately, to obtain this aggregate information,
web analytics services track individual user browsing be-
havior across the web. This violation of user privacy has
been strongly criticized, resulting in tools that block such
tracking as well as anti-tracking legislation and standards
such as Do-Not-Track. These efforts, while improving user
privacy, degrade the quality of web analytics. This paper
presents the first design of a system that provides web ana-
lytics without tracking. The system gives users differential
privacy guarantees, can provide better quality analytics than
current services, requires no new organizational players, and
is practical to deploy. This paper describes and analyzes the
design, gives performance benchmarks, and presents our im-
plementation and deployment across several hundred users.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection (D.4.6, K.4.2)

Keywords
Tracking, Web Analytics, Differential Privacy

1. INTRODUCTION
Website publishers use web analytics information to an-

alyze their traffic and optimize their site’s content accord-
ingly. Publishers can obtain analytics data by running their
own web analytics software programs [3, 14, 15]. These an-
alytics programs provide publishers with statistics about
users on their site, such as their pageviews, clickstreams,
browsers, operating systems, plugins as well as frequency
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of returning visitors. However, they do not provide other
potentially useful information, such as user demographics.

For this reason, publishers often outsource the collection
of web analytics to a third party data aggregator, such as
comScore, Google, Quantcast or StatCounter [2,24]. A data
aggregator collects data from users visiting a publisher’s
website and presents these data in aggregate form to the
publisher. This outsourcing is convenient for publishers, be-
cause they only have to install a small piece of code (i.e., a
JavaScript code snippet) provided by the data aggregator.
More importantly, this scheme allows publishers to learn
statistical information they could not otherwise learn from
their own web server logs, such as the demographic profile
of their user base and the other websites their users visit. A
data aggregator can infer this extended web analytics infor-
mation because it collects user data across many publisher
websites. Compiling extended web analytics via these col-
lected data also benefits the data aggregator because it can
sell this information to advertisers and publishers alike.

Although this scheme is beneficial for the publishers and
the data aggregators, it raises concerns about users being
tracked while browsing the web. This tracking enables a
data aggregator to compile detailed behavior of individual
users, and infer individual user demographics [48]. Thus,
data aggregators are given a lot of information about users’
actions on the web and have to be trusted that they will not
abuse it. This trust has been violated in the past [13,17,18].

Tracking affects not only users, but also the data aggre-
gators themselves, who are often criticized for this behav-
ior. These criticisms have led to industry self-regulation to
provide opt-out mechanisms [4, 5, 19, 25], the Do-Not-Track
(DNT) initiative in the W3C, and many client-side tools,
either to implement DNT [10,20,21], or to prevent tracking
outright [1, 7, 9, 11]. To the extent that these efforts take
hold, the ability for data aggregators to provide extended
analytics to publishers will be degraded.

In addition, even with tracking, inferring accurate user
demographics is a difficult task that may produce inconsis-
tent results. For example, according to Quantcast, 24% of
rottentomatoes.com’s visitors in US are between 18 and 24,
and 20% are between 35 and 44 [23], whereas Doubleclick
says these numbers are 10% and 36%, respectively [6].

To address these issues, we present the design and im-
plementation of a practical, private and non-tracking web
analytics system. Our system allows publishers to directly
measure extended web analytics rather than rely on inferred
data, while providing users with differential privacy guar-
antees under a set of realistic threat assumptions. These



guarantees enable aggregation of users’ private information,
such as demographics and websites visited, without violating
individual user privacy.

In our system, user information is stored in a database
on the user device (client). We exploit the direct communi-
cation that naturally takes place between the publisher and
the users by having the publisher distribute database queries
to clients, and by having the publisher act as an anonymiz-
ing proxy for the (encrypted) answers from the clients to the
data aggregator. The aggregator aggregates the anonymous
answers, and provides the results to the publisher. Both the
publisher and the aggregator add differentially-private (DP)
noise before passing data on to each other.

The decision to use the publisher as a proxy allows us
to avoid introducing a new organizational player in the ar-
chitecture. While this decision is good for deployability, it
creates new technical challenges because publishers can be
malicious. In particular, they might try to exploit their po-
sition in the middle by manipulating which clients receive
and answer queries, and to overcome the DP noise added by
the aggregator using repeated queries.

The contributions of this paper are as follows. To the best
of our knowledge, we are the first to study the problem of col-
lecting extended web analytics information without tracking
users. We describe and analyze a novel design that provides
the first practical solution to this problem, and prove that
our design provides differential privacy. Finally, we imple-
ment and evaluate our system to gauge its feasibility.

The next section presents our goals and trust assump-
tions. After giving an overview of our system in Section 3,
we describe its details in Section 4. We analyze our system’s
properties in Section 5, and report our implementation and
evaluation in Section 6. Section 7 describes related work.
We discuss future work and conclude in Section 8.

2. GOALS AND ASSUMPTIONS

2.1 Functionality Goals
There are three entities in today’s tracking web analytics

systems: the publisher, the data aggregator, and the client.
Publishers create websites. Data aggregators provide pub-
lishers with aggregation service for web analytics. Users use
their clients (e.g., the browser) to access and consume the
content that publishers host.

Figure 1 shows the interactions between these entities to-
day. When clients visit the publisher’s website (step 0), they
also send analytics data to the data aggregator via the code
snippet installed on the publisher’s website (step 1). After
collecting information from individual clients, the data ag-
gregator aggregates analytics information (step 2), and then
shares the aggregate result with the publisher (step 3).

Broadly speaking, and putting user privacy aside for the
moment, we would like our system to provide publishers
and data aggregators with at least the benefits they enjoy in
today’s systems. We would also like to avoid requiring new
players like proxies. Specifically, our functionality goals are:

1. Publishers should get more accurate and more types
of web analytics information than they do today.

2. Data aggregators should obtain web analytics infor-
mation for all of their partner publishers like they do
today, as an incentive for performing aggregation.

Figure 1: Operation of today’s tracking web analyt-
ics systems.

3. The system should scale adequately, and ideally be as
or more efficient than today’s systems.

4. The system should not allow clients or publishers to
manipulate results beyond what is possible today (i.e.,
via botnets).

2.2 User Privacy Goals
Our main user privacy goal is that user data should be

protected within the formal guarantees of differential pri-
vacy (DP) [36]. In particular, each client should know its
own privacy loss as defined by DP with respect to each pub-
lisher and each data aggregator. While our system provides
this guarantee, it should be noted that such knowledge at the
client is of limited value. DP is very conservative, because
it assumes that the attacker may have arbitrary auxiliary
information it can use to discover information about users
in the database. When the attacker does not have this aux-
iliary information, which is the common case, DP’s measure
of privacy loss is overly pessimistic. Although a client in our
system could in theory refuse to answer queries if a privacy
budget is exceeded, doing so is not practical in our setting,
because a query may be legitimately repeated from time to
time (e.g., to measure changes in the user base). Further-
more, DP’s privacy loss measure assumes a static database,
whereas in our setting, the “database” is dynamic: the user
population for a given publisher changes almost constantly,
and some individual user data may change as time passes.

For these reasons, it is unrealistic, and in our setting, un-
necessary to set a hard limit on user privacy loss (i.e., bud-
get). Nevertheless, we find DP to be a valuable mechanism,
in part because it provides a worst-case measure of privacy
loss, but primarily because the noise added to answers sub-
stantially raises the bar for the attacker, while still providing
adequate accuracy for aggregate results.

2.3 Non-goals
Publishers today can directly measure user activity on

their websites (e.g., pages visited, links clicked). In addi-
tion, websites can often legitimately obtain additional infor-
mation directly from users, such as personally identifiable
information (PII), shopping activity, friends, and hobbies.
Information obtained directly from users by publishers is
considered outside the scope for the purposes of this paper.

Note that today most data aggregators provide behavioral
advertising, for which they require individual user informa-
tion, and not aggregate data. Given that other research



shows how to accomplish behavioral advertising without ex-
posing user information [40, 51], for this paper we assume
that the data aggregator requires only aggregate data.

2.4 Trust Assumptions

2.4.1 Client
We assume that the users trust the client software, in

terms of the data it stores locally and its operation, just as
they trust their browser software today. While it is possible
for a browser to be infected by malware, such malware is in
a position to violate user privacy in many ways beyond our
system; thus, we do not protect against this threat.

By contrast, we assume that the clients may be malicious
towards the publisher and the data aggregator. A malicious
client may attempt to distort aggregate results, similar to
the situation today where a client may, for instance, partic-
ipate in click fraud. It may also try to violate the privacy of
other users, possibly colluding with the publisher.

2.4.2 Data Aggregator
We assume that the data aggregator is honest-but-curious

(HbC); in other words, that it obeys the prescribed oper-
ation, but may try to exploit any information learned in
the process. As an HbC player, we assume that the data
aggregator does not collude with the publishers. In prin-
ciple, a malicious publisher could of course simply choose
to work with a malicious data aggregator. We assume a
setup whereby aggregators state their non-collusion in a pri-
vacy statement, making them legally liable and subject to
punishment (e.g., by the FTC). An aggregator that is also a
publisher would have to internally separate information. We
justify an HbC aggregator on the assumption that the client
software plays an overseer role, and allows only HbC aggre-
gators to participate. For instance, the browser could refuse
inclusion to any aggregator that does not provide such a pri-
vacy statement, or appears untrustworthy for any other rea-
son. Today, browsers already play a similar role in a number
of respects, such as by selecting default certificate authori-
ties and search engines, and in some cases, by warning users
of potentially harmful websites. In today’s industry setting
where major data aggregators can generally be expected to
operate within the legal framework of their own stated pri-
vacy policies, we think that this assumption is reasonable.

2.4.3 Publisher
We assume that the publisher is selfishly malicious both

towards the users and the data aggregator, meaning that the
publisher will try to only benefit itself. As a potentially ma-
licious player, the publisher may try to violate the privacy
of users with correct clients. In particular, because the pub-
lisher distributes queries and collects answers, it is in a posi-
tion to selectively query clients, drop selected client answers,
and add answers beyond those required for DP noise. This
position leads, for instance, to an attack whereby the pub-
lisher isolates a single client by dropping all answers except
for those of the single client, and providing fake answers in-
stead of the dropped answers. With repeated queries to such
an isolated client, the publisher may overcome the added DP
noise. The publisher may also be motivated to falsify the re-
sults it gives to the data aggregator, for instance, to appear
more popular or more attractive to advertisers. Our design
has mechanisms to mitigate the effect of these behaviors.

Note, however, that we assume that the publisher cor-
rectly adds DP noise to answers, because withholding noise
does not benefit the publisher, and the minor reduction in
overhead gained (Section 6) is not adequate incentive.

2.5 Incentives
The incentives for the publisher and the aggregator are

richer (Section 6), and more accurate analytics, because we
directly measure attributes rather than infer them. We do
not think that users are incentivized. Although publishers
could offer incentives to users (e.g., better content for par-
ticipating users) to create an incremental deployment envi-
ronment, we think that the browser is a better option for
deployment. The publisher, aggregator, and browser should
also be motivated to provide better privacy to users. Even
though we do not know for certain whether our stated incen-
tives are adequate, we think that they are at least feasible.

3. SYSTEM OVERVIEW
Our system comprises the same three entities that exist

today: the client, the publisher, and the data aggregator
(Figure 2). The publisher plays an expanded role: it dis-
tributes queries to clients, and it proxies client-aggregator
communication. This role requires that the publisher, or its
hosting center, to install new software. While this require-
ment reduces ease-of-use compared to today, we think it is
reasonable: many publishers already run their own analytics
software [2,3,14,15,24] and hosting companies already offer
servers with web analytics software pre-installed [8, 12,16].

The client gathers and stores information in a local data-
base, and answers publishers’ queries using this database.
This information consists of, for instance, user demograph-
ics, browsing behavior, or non-user related information, like
system performance. Demographics information can include
age, gender, marital status, education level, location and in-
come. Browsing behavior can include pages visited, pur-
chases, and searches made. We envision that the client
scrapes most of this information from web pages the user
visits (with informed user consent), such as online social net-
works, shopping websites, and search engines. The user can
also provide some information directly, or the client can ul-
timately infer some information, like income. This scraping
functionality can be supported by the browser. For instance,
the browser may implement basic messaging, encryption and
database mechanisms, and provide a sandboxed plugin en-
vironment for aggregators’ clients.

To distribute queries to clients, publishers post queries at
well-known URLs on their websites. When clients visit a
website (step 0 in Figure 2), they read the queries (step 1).

Queries may be formulated by both the publisher and the
data aggregator. While the queries themselves may be quite
complex (i.e., SQL), the answers are limited to ‘yes’ and ‘no’
values. For instance, for the age distribution of users, the
query effectively asks clients to evaluate ‘yes’ or ‘no’ for each
age range of interest (e.g., <18, 18-34, 35-50, >50). This an-
swering mechanism is achieved by defining buckets, such that
each bucket corresponds to a potential answer value, and by
mapping the query result to these buckets. Ultimately, the
aggregator generates a per-bucket histogram of user counts.
The primary benefit of using buckets is to limit the distor-
tion a malicious client can impose on the aggregate result.

Each generated answer is separately encrypted with the
public key of the data aggregator (step 2). Queries may



Figure 2: Query workflow of our system.

have thousands of defined buckets, most of which have ‘no’
answers; for instance, one for each website a user may visit,
or for each interest a user may have. To reduce the num-
ber of crypto operations, ‘no’ answers are omitted at the
client. Instead, clients generate a specified number of an-
swers which are either ‘yes’ or ‘null’. For example, a query
may specify that every client produces exactly 20 answers
for the websites a user has visited in the last week, regard-
less of the actual number of visited websites. If a client has
not visited 20 different websites, it generates ‘null’ answers
for the difference. If it has visited more than 20 websites,
then it cannot report on every website visited.

After collecting the encrypted answers from clients (step
3), the publisher generates DP noise separately for each
bucket in the form of additional answers. It then mixes the
real and the noise answers (step 4) and forwards all answers
to the data aggregator (step 5).

The data aggregator decrypts the answers, computes the
histogram of bucket counts, and adds DP noise to each count
(step 6). After signing the result, it transmits the counts
to the publisher (step 7), who finally subtracts the noise it
originally added to obtain its own final counts (step 8).

In the end, the publisher and the data aggregator both
obtain aggregate results for the query. Because of the noise,
neither of them obtains an exact result: the publisher’s re-
sult contains the noise the aggregator added, whereas the
aggregator’s result contains the noise the publisher added.

If the publisher or the data aggregator wishes to release
a result to the public, then they must release the “double
noisy” result that was passed to the publisher in step 7.
This precaution prevents the publisher and the aggregator
from computing the noise-free result by subtracting their
own noise, should the other publish its “single noisy” result.

3.1 Audits
Clients occasionally audit publishers to detect if a pub-

lisher is dropping client answers (Figure 3). To audit a pub-
lisher, the client generates and encrypts a nonce (Step 2),

Figure 3: Auditing mechanism of our system.

and transmits it to the publisher instead of the answer the
client otherwise would have sent (Step 3). The client also
transmits the nonce to another, randomly selected publisher
(Step 4), which forwards this nonce report to the data aggre-
gator (Step 5). If the data aggregator often receives nonce
reports without the corresponding nonce answer, it suspects
the publisher of dropping client answers.

4. DESIGN DETAILS
In this section, we describe how queries are generated and

distributed, how the client generates a response and helps
in auditing publishers, and how DP noise is added by the
publisher and the data aggregator.

4.1 Differential Privacy Background
A computation, C, provides (ε, δ)-differential privacy [36]

if it satisfies the following inequality for all datasets D1 and
D2 differing on one record and for all outputs S ⊆ Range(C):

Pr[C(D1) ∈ S] ≤ exp(ε)× Pr[C(D2) ∈ S] + δ (1)

In other words, the probability that a computation C pro-
duces a given output is almost independent of the existence
of any individual record in the dataset. In our setting, this
dataset consists of the values of clients for a given attribute.

Differential privacy is achieved by adding noise to the out-
put of the computation. This noise is independently gen-
erated for each component in the dataset. There are two
privacy parameters: ε and δ. The trade-off between the
accuracy of a computation and the strength of its privacy
guarantee is mainly controlled by ε: a smaller ε provides
higher privacy, but lower accuracy.

The parameter δ relaxes the strict relative shift of proba-
bility. If δ = 0, then the (ε, δ)-differential privacy falls back
to the classical ε-differential privacy, which can be achieved
by adding the Laplace distribution noise with a standard de-
viation

√
2∆C/ε, where ∆C is the sensitivity of the compu-

tation, and is 1 for a computation counting set elements [35].
A non-zero δ is required in some scenarios where the in-

equality (1) cannot be satisfied [36]. Such (ε, δ)-differential
privacy can be achieved in our system by adding the afore-
mentioned Laplace distribution noise with a complementary
resampling mechanism (Section 4.5.1, and Appendix A).



4.2 Queries
Publishers are required to list all their queries at a well-

known URL on their website. This query list is signed by
the data aggregator, even if there are no queries (i.e., an
empty list). The aggregator may periodically check to en-
sure that the list is posted at the well-known URL (e.g., via
fake clients it has deployed) to detect malicious publishers
isolating clients by controlling the distribution of queries to
clients. When a client visits a website, it retrieves the query
list if the previous list has expired. Each query in the list
contains the following fields:

QId Query ID
ps Query selection probability
pa Audit probability
Te Query end time
B Set of answer values (buckets) each with ID bi. (‘null’

and ‘Not Applicable’ (N/A) are well-known IDs)
A Required number of answers
εP DP noise parameter for the publisher’s result

(used by the data aggregator)
εDA, δ DP noise parameters for the data aggregator’s result

(used by the publisher)
SQL Database query

QId is unique among all queries across all publishers work-
ing with this data aggregator. For each query in the list, the
client decides whether to answer or ignore the query. This
decision is made with the selection probability ps assigned by
the publisher, such that the publisher can obtain enough an-
swers from its user base given the expected number of client
visits. δ could be computed based on the expected number
of answers. If the client decides to answer the query, then
it separately decides whether to audit the query with audit
probability pa assigned by the data aggregator, by replacing
the answer with a nonce. The query end time is the deadline
for answering queries.

The buckets B may be pre-defined, downloaded separately,
and cached, if |B| is large. The aggregator sets the DP
noise parameter εDA, and checks each query’s εP to ensure
it generates adequate noise before signing the query list.

The SQL query may produce zero or more numerical val-
ues or strings. Each bucket is defined as a numerical range
or a string regular expression, such as salary ranges (numer-
ical), or websites visited (string). A bucket is labeled as ‘yes’
if a row in the SQL output falls within the numerical range,
or matches the regular expression. In addition, buckets have
instructions to be followed when the same SQL output la-
bels multiple buckets as ‘yes’ (e.g., select one or all), and the
number of ‘yes’ labeled buckets exceeds the allowed number
of answers A (e.g., select most frequently occurring or ran-
dom buckets). If the client does not have A number of ‘yes’
labeled buckets, it uses a well-known bucket ID ‘null’.

As an example, suppose a publisher wants to learn the age
distribution of its female users. The SQL can be “SELECT
age FROM LOCAL_DB WHERE gender = female”. The buck-
ets can be B = {< 18, 18− 34, 35− 50, > 50}, and A = 1.

An SQL query often has predicates, such as “WHERE gen-

der = female” in the above example. These predicates en-
able the publisher to query different segments of its user
base. Too specific predicates, however, may produce results
that are not useful in aggregate. To enable the publisher
to notice that the predicates are too narrow, we define an-
other well-known bucket ID ‘Not Applicable’ (‘N/A’), used
by the client when the query predicates fail. This well-known

bucket ID is also useful for the data aggregator to detect
malicious publishers who may set very specific predicates to
isolate a client and repeat the query to overcome the noise
(e.g., few answers with bucket IDs other than ‘N/A’).

4.3 Query Response
If a client decides to answer a query, it executes the SQL

on its local database (step 2 in Figure 2) and produces the
set of buckets labeled ‘yes’ (i.e.,M). If no predicates match,
the client generates A answers with the well-known bucket
ID ‘N/A’, each individually encrypted with the public key
of the data aggregator:

Response = EncDA pub{QId,N/A} (A times)

If the predicates match and |M| ≤ A, the client produces
A individually encrypted answers, where |M| answers con-
tain the matching bucket ID bi ∈M, and A− |M| answers
contain the well-known bucket ID ‘null’ :

Response =

{
EncDA pub{QId, bi} ∀bi ∈M
EncDA pub{QId, null} (A− |M| times)

If |M| > A, the client selects A buckets according to the
instructions and produces A individually encrypted answers.

After generating the response, the client transmits it to
the publisher along with the query ID (step 3 in Figure 2):

C → P : QId,Response

To illustrate, assume a query asks the 20 most visited
sites. If a client visited only 14 sites, it generates 14 answers
with bucket IDs representing these sites and six answers with
bucket ID ‘null’. In contrast, if the client visited 25 sites, it
generates only 20 answers for the 20 most visited sites.

The client then records that it answered the query so as
not to answer it again before the query end time Te. It also
records the ε values to track the user’s privacy exposure to
the publisher and the aggregator. Note that the publisher
may store client IP addresses answering this query to pre-
vent a malicious client from skewing the aggregate result by
sending many responses for the same query.

4.4 Audit Response
The audit serves two purposes. First, it can detect when

a publisher is dropping client answers. Second, it can detect
when a publisher is adding a substantial number of fake
answers (beyond the noise).

If a client decides to audit the publisher, it generates a
nonce, encrypts the nonce and the QId with the aggregator’s
public key as well as A− 1 ‘null’ answers, and transmits the
response to the publisher as if it was a real response:

Response =

{
EncDA pub{QId, nonce} once
EncDA pub{QId, null} (A− 1 times)

The client also obtains a blind signature blind sig for the
nonce from the aggregator [31] and randomly selects a dif-
ferent publisher, which is a customer of the aggregator. The
client then transmits a separate, encrypted copy of the nonce
and the nonce’s blind signature to that publisher:

NR = (EncDA{QId, nonce}, blind sig)

This nonce report cannot be directly submitted to the data
aggregator, because the aggregator would learn which pub-
lisher a client has visited and decided to audit.



Each publisher periodically forwards received nonce re-
ports to the aggregator. The client learns the set of other
publishers by periodically downloading a list from the aggre-
gator. This list associates a probability with each publisher
that is roughly proportional to the number of answers each
publisher handles. The client selects the different publisher
according to this probability. As a result, each publisher
handles a fair proportion of nonce reports.

If the aggregator consistently receives nonce reports via
different publishers without a corresponding nonce message
from the audited publisher, the aggregator suspects the au-
dited publisher of dropping messages, possibly in an attempt
to isolate a client. In this case, the aggregator can validate
this suspicion by masquerading as real clients from browsers
it controls, and sending audits from these clients. This check
is necessary because a malicious client may have sent nonce
reports via different publishers, without the corresponding
nonce via the audited publisher to cast suspicion on it.

Because the aggregator knows the probability of sending
an audit response instead of a query response, it knows the
proportion of audits to answers that should be received. If
this proportion is consistently too low, then the aggregator
suspects the publisher of adding additional fake answers.

The purpose of the blind signatures is to limit the rate a
client can generate audits, which is helpful for two reasons.
First, it drastically reduces the amount of suspicion a mali-
cious client can cast on publishers by just sending the nonce
reports, but not the nonces, as described above.

Second, by ensuring that these blind signatures are only
assigned to clients and not publishers, the data aggrega-
tor prevents a malicious publisher from trivially generating
many fake audits. Using these fake audits, the publisher
could either drop client answers for an isolation attack with-
out considering the possibility that they may be audit re-
sponses, or generate many fake answers by maintaining the
right proportion of audits to answers. This use of blind sig-
natures ultimately raises the bar for the publisher by forcing
it to use botnet clients.

The blind signatures are timestamped to prevent an at-
tacker from hoarding them for later use [26, 30, 38]. These
timestamps are coarse-grained (e.g., end of the week) to pre-
vent the aggregator from linking signatures to clients.

4.5 Noise Generation

4.5.1 Noise at the Publisher
The publisher generates differentially-private (DP) noise,

rounded to the nearest integer, for all buckets with the data
aggregator’s ε value (i.e., εDA), NP = {nP,1, nP,2, ..., nP,b},
where b is the number of buckets (shown as Noise P in step
4 in Figure 2). The mechanism for generating noise is to
create additional answers. The amount of noise to add may
of course be positive or negative. Recall, however, that the
answers themselves are positive bucket counts. There is no
way to supply a negative bucket count. To generate nega-
tive noise, we define an offset value o, which the aggregator
will subtract from each per-bucket count. The number of
additional answers supplied will be greater or less than this
offset to create positive or negative noise, respectively.

To give an example, if the offset is 20, and the noise is +4,
the publisher creates 24 answers for the given bucket, and
the aggregator later subtracts 20 from the bucket’s count.
On the other hand, if the noise is -5, the publisher creates

15 answers. Stated precisely, the publisher calculates the
number of per-bucket answers to create as:

N
′
P = {nP,1 + o, nP,2 + o, ..., nP,b + o}

= {n
′
P,1, n

′
P,2, ..., n

′
P,b}

These noise answers are encrypted with the aggregator’s
public key; hence, indistinguishable from client answers. Af-
ter the query end time Te, the combined set of client answers
and noise answers RDA are randomly mixed and sent to the
aggregator along with the query ID and offset value:

P → DA : QId,RDA, o

The aggregator decrypts the answers, counts them, and
subtracts the offset to obtain the noisy result:

R
′
DA = {r1 + n

′
P,1 − o, r2 + n

′
P,2 − o,

..., rb + n
′
P,b − o}

= {r1 + nP,1, r2 + nP,2, ..., rb + nP,b}

where ri is the count of client answers belonging to bucket
bi, and nP,i is the publisher’s noise value for bucket bi.

At this point, the data aggregator can make two checks
to detect potential malicious publisher behavior. First, the
aggregator can estimate the number of expected answers
based on the number of audits received for this query and
the audit probability pa. After accounting for the expected
noise answers (i.e., b× o), if the received number of answers
is significantly higher or lower than the expected number of
answers, the aggregator suspects the publisher of adding or
removing answers, respectively.

Second, after obtaining the bucket counts, the data ag-
gregator can check for anomalies in this publisher’s results.
For instance, if the results for the same query consistently
show low-value buckets along with high-value buckets (e.g.,
‘female<3’, ‘N/A>1K’), the publisher may be trying to iso-
late a client’s answer and overcome the noise. In this case,
the aggregator may suspect the publisher, check the query
predicates manually, and/or may not return the result.

There remains the question of how to set the value of
o. The noise value cannot exceed the offset, and must be
resampled when nP,i < −o. In Appendix A, we prove that
even with this resampling, our procedure still provides (ε, δ)-
differential privacy. Theorem 1 from Appendix A sets o as:

o ≥ λ ln
((
e
A
λ − 1 + δ/(2A)

)
A/δ

)
(2)

where λ ≥ 2A/εDA. [43] argues that, for DP guarantees to
be met, δ < 1/c, where c represents the number of clients an-
swering this query. Since in our setting a client may answer
the same query multiple times, we require δ < 1/(m × c),
where m represents the maximum number of queries a client
can answer. For the purpose of this paper, we assume a con-
servative setting of m = 1000.

4.5.2 Noise at the Data Aggregator
After aggregating the answers and obtaining the noisy re-

sults, R
′
DA, the data aggregator generates DP noise us-

ing the ε value specified by the publisher (i.e., εP ), NDA =
{nDA,1, nDA,2, ..., nDA,b} (shown as Noise DA in step 6 in



Figure 2). The data aggregator computes the results RP :

RP = R
′
DA + {nDA,1, nDA,2, ..., nDA,b}

= {r1 + nP,1 + nDA,1, r2 + nP,2 + nDA,2,

..., rb + nP,b + nDA,b}

Then, this result is signed by the data aggregator and sent
to the publisher (step 7 in Figure 2):

DA→ P : QId,RP

When the publisher gets RP , it removes its own noise and

obtains its own noisy results, R
′
P , (step 8 in Figure 2):

R
′
P = RP − {nP,1, nP,2, ..., nP,b}

= {r1 + nDA,1, r2 + nDA,2, ..., rb + nDA,b}

where ri is the count of client answers belonging to bucket
bi, and nDA,i is the aggregator’s noise value for bucket bi. In
the end, the aggregator’s result contains the DP noise added

by the publisher (i.e., R
′
DA), whereas the publisher’s result

contains the DP noise added by the aggregator (i.e., R
′
P ).

5. ANALYSIS

5.1 Data Aggregator
Although the data aggregator follows the prescribed op-

eration and does not collude with publishers, it may still
be motivated to track clients across publishers and may try
to exploit any information it learns. This information can
include identifiers associated with clients, allowing the ag-
gregator to track them. In the absence of a proxy, one such
identifier is the client IP address. By using the publisher as
an anonymizing proxy, our system hides IP addresses from
the aggregator during the collection of answers.

The aggregator may try to obtain other identifiers by ma-
nipulating query parameters (i.e., εDA, εP , and pa), and the
audit activities (i.e., assignment of blind signatures and pub-
lisher probabilities for nonce reports). For example, an an-
swer to a common query (e.g., a rare occupation) can be
distinguishing among clients. The DP noise added by the
publisher solves this problem (Section 4.5.1). To minimize
this noise, the aggregator may set a large εDA value, but it
would be easily detected by clients and industry regulators.

Besides rare answers, the combination of answers can also
act as an identifier for a client. For example, a client’s re-
sponse to a query about most visited sites may be unique.
Our system solves this problem by separately encrypting
each answer at the client (Section 4.3) and mixing client
answers with noise answers at the publisher (Section 4.5.1).

The aggregator has no incentive to use a large εP , which
would only serve to reduce noise for the publisher.

In the auditing mechanism, the nature of the blind signa-
tures and coarse-grained timestamps prevents the aggrega-
tor from connecting nonce reports back to clients. The ag-
gregator may set a large audit probability for one publisher,
and small probabilities for other publishers. This high prob-
ability would cause the clients of the first publisher to obtain
blind signatures more often than others; hence, enabling the
aggregator to infer the publisher these clients visit. How-
ever, unusually high audit probabilities will raise suspicion
among clients, and regulators. Furthermore, the utility of
the first publisher will suffer, triggering detection.

5.2 Publisher
A potentially malicious publisher may want to exploit its

position in the middle to learn an individual client’s infor-
mation, and falsify the results the data aggregator gets. The
publisher can control the query parameters (i.e., SQL, A,
B, εP , ps), the distribution of queries, the collection and for-
warding of responses and nonce reports, the noise process,
and the publishing of final results. We analyze how a pub-
lisher can try to exploit these parameters, and discuss how
our system raises the bar for these attempts to succeed.

5.2.1 Publisher Attacking Clients
A client’s response is encrypted with the aggregator’s pub-

lic key. The client also sends a fixed number of answers (i.e.,
A), preventing the publisher from learning how many buck-
ets were matched for a query. Absent collusion, the pub-
lisher cannot learn an individual client’s answer from the
aggregator, and obtains only noisy aggregate results.

To minimize the noise the aggregator adds, the publisher
may set a large εP value. By enforcing a maximum εP value,
the aggregator can ensure that it will add enough noise to
protect users’ privacy (Section 4.5.2). Nevertheless, a pub-
lisher may try to learn a client’s answer, by isolating it and
repeating the same query to overcome the noise. We discuss
how our system raises the bar for such a publisher.
Isolation via selectively dropping other clients’ an-
swers: To isolate a client’s answer, a malicious publisher
may drop answers from other clients and replace them with
fake answers it generates. This attempt will be detected
by the aggregator, because dropped answers will contain
nonces. When the aggregator consistently receives reports
via other publishers, but not the nonces from the audited
publisher, it suspects the publisher of dropping answers and
can confirm this suspicion by masquerading as real clients
and sending nonces through the publisher (Section 4.4).

To allow the malicious publisher to drop answers, other
colluding publishers may drop nonce reports. However, they
cannot selectively do so to help their partners, because they
do not know about which publisher a given nonce report is.
The aggregator also knows approximately how many reports
a publisher should forward (i.e., via the publisher’s proba-
bility to be randomly selected), and if it does not receive
enough reports, it suspects the publisher of dropping them.
For these reasons, a publisher cannot easily help another
malicious publisher to drop answers without detection.
Isolation via dropping target client’s answer: A dif-
ficult, but theoretically possible attack is for the publisher
to repeat a query and obtain results, half of which contain
the target client’s answer, and half of which do not. By
comparing the average result of these two sets of queries,
the publisher can determine if the target client’s answer is
positive or ‘null’. The auditing mechanism may not detect
this attack, because the audit is relatively rare, and thus,
the target client may generate zero or very few audits. This
attack is hard to carry out, because the client population
may change over time, and because if the selection proba-
bilty ps is less than 1, different clients will answer different
queries. In both of these cases, the non-noisy value would
change a bit with successive queries; thus, requiring even
more queries to eliminate the effect of noise.

Nevertheless, we simulated this attack, assuming a fixed
set of 100 clients, one of whom is the target client. We ex-
ecute the same query Q times, varying Q from 30 to 2000.



Figure 4: Confidence level for the isolation attack
via dropping target’s answer.

We also vary the selection probability ps to be 1.0, 0.5, and
0.05. When ps = 1.0, we drop the target’s answer half the
time. For ps = 0.5 and ps = 0.05, there is no need to inten-
tionally drop the target answer, because it is often naturally
not provided. We average the counts for queries with and
without the target. If the difference in the average is greater
than 0.5, we guess that the target’s answer is 1. If it is less
than 0.5, we guess that the target’s answer is ‘null’. We vary
the number of queries Q, run 10000 trials for each Q, and
calculate the percentage of times the guess is correct. This
percentage is the publisher’s confidence after Q queries.

Figure 4 shows the results of our simulation for the cases
where the selection probability ps is 1.0, 0.5, and 0.05. When
ps = 1.0, it takes over 350 queries to reach 95% confi-
dence. Assuming one query per week, this attack would take
roughly seven years. In the cases of ps = 0.5 and ps = 0.05,
the attacker requires about 1000 and 2000 queries, respec-
tively, for the same level of confidence.
Isolation via buckets or SQL: The publisher can also
isolate a client by manipulating the query such that only
the target client provides a positive answer (or, conversely,
all clients except the target client provide positive answers).
This attack can be accomplished either by manipulating the
SQL predicate, or the bucket definitions (i.e., to include PII
or a rare combination of attributes). Our general approach
to both of these methods is to monitor answers for clues sig-
naling that this attack may be happening, and to manually
inspect SQL queries when these clues appear. While man-
ual inspection is not ideal, given that most publishers will
ask the same types of queries, most of the queries will come
from an already approved library.

The clue we are searching is any bucket whose count is,
for the same repeated query, consistently very low (roughly
0), or very high (roughly the number of answering clients).
For instance, if the predicate isolates the user (i.e., the user’s
name), then we expect to see very low bucket counts, except
for the ‘N/A’ bucket, whose value will be very high. If the
predicate does the reverse (i.e., includes all clients, but the
target), then the ‘N/A’ bucket will be very low, and the
other buckets will be very high. A very low ‘N/A’ bucket

is suspicious, because in this case the predicate is appar-
ently not needed and should be dropped. Likewise, if the
target user is isolated by a rare bucket definition, then cer-
tain buckets will have very low counts. In this case, we can
expect an honest publisher to modify its bucket definitions
to prevent such consistent very low counts.

In some cases, however, examining the SQL may not be
adequate. One such example is a predicate like“WHERE page-

visited = example.com/UniqueURL”, where UniqueURL is pro-
vided only to the isolated client. In this case, the aggregator
must check that the URL is provided to multiple clients by
operating fake clients.
Isolation via query distribution: A malicious publisher
may send a query to only one client. The aggregator, how-
ever, can ensure that the queries are available at well-known
URLs at the publisher site via its own fake clients. Our au-
diting mechanism can also be extended to send reports when
the query list or any queries are not accessible by clients.
Other attacks: By enforcing a maximum A value, the ag-
gregator can ensure that clients do not spend unnecessary
resources (e.g., CPU, bandwidth) while answering queries,
to prevent denial of service attacks by the publisher.

There is no clear incentive for a selfishly malicious pub-
lisher not to add DP noise. Even so, the aggregator can still
detect suspicious behavior: The aggregator can estimate the
number of clients ce as the number of audit reports received
divided by the audit probability pa. The approximate total
number of expected answers is therefore (ce × A) + (b× o),
where b is the number of buckets, o is the offset, and A is the
number of answers per client. If answers are substantially
lower than this, the publisher is suspected.

A malicious publisher can publish its own single-noisy
results that include only the aggregator’s noise. However,
these results will not have the aggregator’s signature; thus,
exposing the publisher. Furthermore, the aggregator can de-
tect this behavior because it knows the double-noisy results.

5.2.2 Publisher Falsifying Results
To appear more popular or more attractive to advertisers,

a publisher may want to falsify results by generating many
fake answers. If the publisher exceeds the number of answers
expected by the aggregator (i.e., ce × A + b × o), it will be
suspected. Thus, it can only generate answers that belong to
certain buckets and is limited by the number of buckets and
the offset (i.e., b × o). This number may not be significant
for queries with few buckets, depending on the total number
of answers. For instance, it is 100 for a query about gender
distribution with 5000 answers and an offset of 50.

On the other hand, b × o can be large for queries with
many buckets. If all fake answers are used in few buckets, all
other buckets would have values close to −o after the offset
subtraction. The probability of simultaneously generating
these noise values is extremely low, signaling a manipulation.
To prevent detection, the publisher would distribute the fake
answers more evenly, limiting its distortion in a bucket.

5.3 Client
A client may act maliciously towards the publisher, the

aggregator and to other honest clients. A client can lie in
its response to distort the aggregate result; however, this
distortion is limited by A set by the publisher. By keeping
a record of client IP addresses, the publisher can also ensure
that a client sends only one response for a query.



Table 1: Queries and associated parameters. The
buckets include our two well-known bucket IDs.

Property # buckets A o
Age 7 + 2 1 66
Gender 2 + 2 1 66
Income 6 + 2 1 66
Education 5 + 2 1 66
Has children? 2 + 2 1 66
Location 5000 + 2 1 66
Ethnicity 5 + 2 1 66
Other sites visited 3000 + 2 10 751
Total # pages visited 10 + 2 1 66
Visit frequency (1000× 3) + 2 10 751
Search engines used 5 + 2 3 211

By sending fake nonce reports without the corresponding
nonces, a malicious client can incriminate a publisher, and
cause the aggregator to manually check this publisher. A
client may also collude with a malicious publisher and gen-
erate nonce reports to help the publisher maintain the right
proportion of audits to answers, either in an isolation at-
tack, or in generation of fake answers to falsify results. By
controlling the blind signature assignment to clients, the ag-
gregator can limit this behavior, and force the publisher to
get a bigger botnet, increasing chances of detection.

6. IMPLEMENTATION & EVALUATION

6.1 Implementation
We implemented the client as a Firefox addon. Our client

keeps user information in a local database, looks for queries
at a well-known URL (e.g., publishersite.com/queries/), and
returns an encrypted response. The client is about 1000 lines
of JavaScript code and 3000 lines of RSA libraries.

The publisher software consists of a simple server-side
script that stores the encrypted responses at the publisher’s
website, and a plugin for the opensource web analytics soft-
ware Piwik [15]. Our plugin allows the publisher to view the
queries, number of answers and results as well as enables the
DP noise process and forwarding of answers. In total, the
publisher software is about 450 lines of PHP code.

The data aggregator software is a simple program that
enables the publisher to upload the encrypted answers. The
aggregator then decrypts and aggregates the answers, adds
noise and returns the signed results to the publisher. Our
implementation is about 275 lines of Java and PHP code.

6.2 Example scenario
We analyze the computational and bandwidth overhead

we impose on the components via some micro benchmarks.
Lacking information about current aggregators’ infrastruc-
ture makes a comparison difficult. Nevertheless, to analyze
our system’s overhead, we use the following scenario. Each
week, a publisher poses queries shown in Table 1 to 50K
clients. The first eight queries collect the same information
current aggregators provide to publishers. The last three
are additional queries our system enables the publisher to
pose: a 10-bucket histogram of the total number of pages
visited by users across all sites, a 3-bucket histogram of visit
frequency to each of 1000 websites selected by the publisher,
and how many users use each of the top 5 search engines.
We assume the aggregator uses a 2048-bit key.

Table 2: Per week bandwidth usage of the publisher
and the data aggregator.

Publisher Data Aggregator
Collecting answers 0.37GB -
Forwarding noise answers 1.20GB 1.20GB
Forwarding all answers 1.57GB 1.57GB

Table 3: Clients having used search engines on a
given day. Actual/Publisher/Data Aggregator

Day Google Yahoo Bing None/Other
01/18 72/73/73 20/20/19 1/-1/10 44/42/49
01/19 63/57/59 20/21/20 2/4/2 29/29/29
01/20 54/57/52 17/18/17 0/-1/-3 29/30/30
01/21 59/62/59 16/15/15 0/5/4 30/29/34

6.2.1 Computational Overhead
To measure the computational overhead, we ran our client

on a laptop running Mac OS X 10.6.8 on an Intel Core 2 Duo
2.66 GHz as well as on a smartphone running Android 2.3.5
with a 1 GHz processor. Our JavaScript client can achieve
about 380, 20, and 16 encryptions per second on Google
Chrome, Firefox, and on the smartphone, respectively. Note
that JavaScript can be slower than native code.

We ran the publisher and the aggregator software on a
machine with 2GB of memory running Linux 2.6.38 kernel
on an Intel Xeon two cores 2.4GHz. The publisher software
can generate and encrypt around 7980 answers per second.
In our scenario, the expected total number of additional an-
swers (i.e., b × o) for all 11 queries is around 4.9M, taking
the publisher less than 11 minutes per week to generate.

The data aggregator software can decrypt and aggregate
about 270 messages per second. In our scenario, the aggre-
gation takes about 3.6 hours per week for the first 8 queries
and about 6.6 hours per week for all 11 queries. Most of this
overhead is due to the additional noise answers.

6.2.2 Bandwidth Overhead
The compressed size of the biggest query (i.e., 5002 buck-

ets) is about 35KB. In comparison, nytimes.com’s homepage
is about 500KB, excluding advertisements. Furthermore,
buckets may not change very often, and can be cached.

The client’s bandwidth overhead is in the order of a few
kilobytes for sending responses. In our example, a client
would consume about 8KB/week for all 11 queries. Table 2
shows the publisher’s and the data aggregator’s total band-
width consumption per week. Most bandwidth consumption
is related to the noise answers; however, the overhead is still
acceptable: distributing nytimes.com’s homepage to the 50K
user sample just once would consume about 23.8GB.

6.3 Deployment
To test our system’s feasibility, we deployed our client

via our friends and mturk.com for 15 days with 236 unique
clients. We report on their browsing activities. On average,
there were 118 active clients daily. Each day, we queried
clients about how many pages they browsed, which sites
they visited, their visit frequency to these sites, and which
search engines they used. We used 3K most popular sites
from Alexa and set εP = εDA = 0.5. Note that our goal was
to gain experience rather than gather meaningful data.



The clients in our deployment were fairly active; almost
half of them having visited at least 100 pages. Major sites,
such as google.com, youtube.com and facebook.com, were
(as expected) reported more than many other sites. We also
gathered some data on the usage frequency of these sites.
Many users have visited google.co.in much more frequently
than facebook.com or youtube.com. Table 3 shows the num-
ber of clients having used a search engine. Our client covered
only three search engines and might have missed searches on
other sites with search functionality (e.g., Wikipedia).

7. RELATED WORK
Although web analytics, as far as we know, has never been

considered in a privacy context, there have been a number
of approaches for providing users with privacy guarantees in
distributed settings. Here, we review past work most related
to our system, in the areas of anonymous communication,
privacy-preserving aggregation and differential privacy.

Users can use a VPN proxy or an anonymizing network
like TOR [22] for anonymous communication. While provid-
ing privacy benefits for anonymous browsing, these systems
are not suitable for non-tracking web analytics: they may
violate our non-tracking goal (e.g., a VPN proxy observing
the source and the destination of a session), mislead the
publisher to collect incorrect information (e.g., the proxy’s
or TOR exit node’s address misleading a publisher using IP
geolocation), or most importantly, do not provide any differ-
ential privacy guarantees (e.g., if sensitive data is collected).

For these reasons, researchers have proposed systems that
both preserve users’ privacy and enable accurate collection
and aggregation of private information [45, 46]. These sys-
tems, however, either make assumptions about the collected
information (i.e., that it will not to leak the source iden-
tity) [46], or require an algorithm to decide which data are
safe to contribute, which may not be easy to devise [45].
In contrast, our system combines differential privacy and
separate encryption of answer messages to protect against
identity leakage through the data, without any assumptions
or prerequisites. Furthermore, these systems rely on an
anonymity network, such as TOR, to hide the source iden-
tity (i.e., IP address), whereas our system utilizes an already
existing entity (i.e., the publisher) as an anonymizing proxy.

Applebaum et al. proposed a system more similar to ours,
in which participants send their private data (i.e., {key,
value} pairs) to a proxy, which then forwards these data
to a database responsible for aggregation [27]. The system’s
main goal is to achieve this aggregation without exposing
participants’ keys to each other. This goal requires a strong
cryptographic model, causing each participant higher over-
head than in our system. Therefore, this system is perhaps
more suitable for publishers wanting to share their own, al-
ready aggregated analytics data rather than for users.

While these systems provide users with some privacy guar-
antees, they do not adhere to differential privacy, which is
considered to give stronger and more formal guarantees than
existing techniques [34, 35, 37]. Many original uses of dif-
ferential privacy, however, assume the existence of a cen-
tral database controlling the disclosure of results [28, 41].
Although attempts have been made to provide differential
privacy in a distributed environment, these attempts either
incur high overhead [36] or suffer from client churn [47, 50],
making them impractical in a large-scale environment.

To tackle this practicality problem, recent proposals em-

ploy different approaches for generating differentially-private
noise. Duan et al. utilize two honest-but-curious (HbC)
servers to add noise, and guarantee accuracy via relatively
efficient, but still costly zero-knowledge proofs [33]. Götz
and Nath also use two HbC servers, but propose that users
add noise, such that honest users compensate for the noise
that unavailable or malicious users did not generate [39].
While preserving honest users’ privacy, this system also al-
lows a malicious user to distort the result arbitrarily.

More recently, Chen et al. proposed a proxy-based system
(PDDP) for achieving differential privacy in a distributed
environment [32]. PDDP utilizes only one HbC proxy that
distributes an analyst’s queries to clients, collects responses,
and adds noise in a blind fashion (i.e. does not know how
much noise it added). PDDP does not scale for a web an-
alytics application, for two reasons. First, PDDP has no
way of selecting classes of users to receive a given query (i.e.
all users that visit a given website). Our system exploits
publishers for that purpose. Second, PDDP encrypts every
bucket answer, ‘yes’ and ‘no’ alike, making it very costly for
the large-bucket queries that are needed in web analytics.

8. CONCLUSION & FUTURE WORK
We present what is to our knowledge the first system for

collecting accurate, extended web analytics without tracking
users. Our system provides users with differential privacy
guarantees, while not requiring new organizational compo-
nents. It may be possible to apply our technique to other an-
alytics problems, such as application analytics (e.g., mobile)
and surveys about sensitive topics (e.g., elections, drug use).
These scenarios, however, present additional constraints and
challenges (e.g., developers without a website). We plan to
examine them in more detail.

While our design avoids the need for a new HbC organi-
zational component (e.g., a proxy), it does so at the cost
of certain new threats (e.g., publisher dropping responses)
and additional mechanisms. Even with an HbC proxy, how-
ever, the threat of isolation attacks through SQL or bucket
manipulations remains. One avenue of future work is to
explore new designs addressing these issues while maintain-
ing the scalability properties of the current system, and to
understand the trade-off points better.

One approach to mitigating the isolation attacks through
SQL or buckets might be to simply withhold results for
buckets with low-values [27]. Another approach might be
to have clients simply not answer repeat queries; however,
this approach clearly results in a utility loss that needs to be
better understood. Malicious publishers may also try to by-
pass such a mechanism via small variations in queries, essen-
tially querying the same information with slightly different
queries. Potential defenses may borrow ideas from informa-
tion flow, each client tracking which piece of information
it has exposed previously [29, 44, 49]. Other sophisticated
approaches applied in centralized settings may help the ag-
gregator and the publisher achieve better accuracy [28, 41].
One avenue of future work is to understand whether we can
extend their usability to our distributed setting.
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APPENDIX
A. ANALYSIS OF RESAMPLED NOISE

In this appendix, we prove that the noise added by the
publisher still adheres to differential privacy principles. In



Algorithm 1 ResampledNoise

procedure Noise(function f with b dimensions, noise
magnitude λ, user input x, offset o)

2: for each dimension i of f do
do X̃i ∼ Lap(λ)

4: while X̃i < −o
Oi = f(x)i + bX̃ic+ o

6: end for
return O1, O2, . . . , Ob

8: end procedure

particular, we prove that resampling the noise value when it
exceeds the offset still provides (ε, δ)-differential privacy.

Definition 1 (indistinguishability [36]). An algorithm
A is (ε, δ)-differentially private if for all user data x, x′ dif-
fering in the data of a single user and for all subsets O of
the output space Ω:

Pr[A(x) ∈ O] ≤ eε Pr[A(x′) ∈ O] + δ

Theorem 1. Consider a histogram query f with b buck-
ets. For a user u let ui denote the user’s value for bucket i
of f . We require ui to be a non-negative integer bounded by
A, i.e., ui ∈ {0, 1, . . . , A} and

∑b
i=1 ui = A. We denote by

x the values for a fixed set of users. With

o ≥ λ ln
((
e
A
λ − 1 + δ/(2A)

)
A/δ

)
and

λ ≥ 2A/ε
Algorithm 1, ResampledNoise gives (ε, δ)-differential privacy.

In our system, a user may send multiple answers with
‘N/A’ or ‘null’ as bucket IDs. Therefore, we need to use the
general bound for the user’s value for bucket i (i.e., ui ∈
{0, 1, . . . , A} rather than ui ∈ {0, 1}).

Proof. We start by analyzing a variant of ResampledNoise,
in which no rounding takes place and we do not add o in
the end. This replaces Line 5 with Oi = f(x)i + X̃i. We
show that this variant preserves (ε, δ)-differential privacy.
The privacy guarantee of the original ResampledNoise fol-
lows immediately from the fact that any transformation (in
this case, rounding) of a differentially-private output also
preserves privacy [42].

Consider any neighboring inputs x, x′ and any outputs O.
We define the subset of bad outputs O′ to be the o, such that
there exists an i with f(x)i 6= f(x′)i and oi ≤ f(x)i+A− o.
Let us compute the probability of creating a bad output for
each i, such that f(x)i 6= f(x′)i. By Xi, we denote a variable
distributed according to Lap(λ).

Pr[X̃i < −o+A] (3)

= Pr[Xi < −o+A|Xi > −o] (4)

=
Pr[−o < Xi < −o+A]

Pr[Xi > −o]
(5)

=
Pr[Xi < −o+A]− Pr[Xi < −o]

1− 1/2e
−o
λ

(6)

=
1/2e

−o+A
λ − 1/2e

−o
λ

1− 1/2e
−o
λ

(7)

Since f(x), f(x′) differ in at most 2A dimensions, we have
that

Pr[Noise(x) ∈ O′] ≤ 2A
1/2e

−o+A
λ − 1/2e

−o
λ

1− 1/2e
−o
λ

We claim that

Pr[Noise(x) ∈ O′] ≤ δ (8)

Proof.

Pr[Noise(x) ∈ O′] ≤ δ

⇔1/2e
−o+A
λ − 1/2e

−o
λ

1− 1/2e
−o
λ

≤ δ/(2A)

⇔e
−o+A
λ − e

−o
λ

1− 1/2e
−o
λ

≤ δ/A

⇔ e
+A
λ − 1

e
o
λ − 1/2

≤ δ/A

⇔
(
e

+A
λ − 1 + δ/(2A)

)
A/δ ≤ e

o
λ

⇔λ ln
((
e

+A
λ − 1 + δ/(2A)

)
A/δ

)
≤ o

The last inequality is true based on our assumptions stated
in Theorem 1. To complete the proof, it suffices to show:

Pr[Noise(x) ∈ O \ O′] ≤ eε Pr[Noise(x′) ∈ O \ O′]
Let us start by considering a dimension i. We note that

Pr[Noise(x)i = oi] = Pr[X̃i = oi − f(x)i]

=

{
Pr[Xi = oi − f(x)i|Xi ≥ −o] if oi − f(x)i ≥ −o
0 otherwise

For o ∈ O \ O′ we have by definition of O′ that either
f(x)i = f(x′)i or f(x)i +A− o < oi.

In the first case, we have Pr[oi = Noise(x)i] = Pr[oi =
Noise(x′)i]. In the second case, we have that both f(x)i +
A−o < oi as well as f(x′)i−o < oi (since |f(x)−f(x′)| ≤ A).
Thus,

Pr[oi = Noise(x)i]

Pr[oi = Noise(x′)i]
=

Pr[Xi = oi − f(x)i]

Pr[Xi = oi − f(x′)i]
.

We have that for o ∈ O \ O′

Pr[Noise(x) = o]

Pr[Noise(x′) = o]
(9)

=

∏b
i=1 Pr[X̃i = oi − f(x)i]∏b
i=1 Pr[X̃i = oi − f(x′)i]

(10)

=

∏
i:f(x)i 6=f(x′)i Pr[Xi = oi − f(x)i]∏
i:f(x)i 6=f(x′)i Pr[Xi = oi − f(x′)i]

(11)

=

∏
i:f(x)i 6=f(x′)i 1/(2λ)e−|oi−f(x)i|/λ∏
i:f(x)i 6=f(x′)i 1/(2λ)e−|oi−f(x′)i|/λ

(12)

≤
∏

i:f(x)i 6=f(x′)i

e1/λ(−|oi−f(x)i|+|oi−f(x
′)i|) (13)

= e
1/λ

∑
i:f(x)i 6=f(x′)i

−|oi−f(x)i|+|oi−f(x′)i| (14)

≤ e1/λ
∑
i:f(x)i 6=f(x′)i

|f(x)i−f(x′)i| (15)

≤ e2A/λ (16)

≤ eε By λ ≥ 2A/ε (17)

Putting Equations (8, 17) together, we have that

Pr[Noise(x) ∈ O]

= Pr[Noise(x) ∈ O′] + Pr[Noise(x) ∈ O \ O′]
≤ δ + eε Pr[Noise(x′) ∈ O \ O′]
≤ δ + eε Pr[Noise(x) ∈ O],

which completes the proof.


