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ABSTRACT

BGP Route Reflectors (RR), which are commonly used to

help scale Internal BGP (iBGP), can produce oscillations,

forwarding loops, and path inefficiencies. ISPs avoid these

pitfalls through careful topology design, RR placement, and

link-metric assignment. This paper presents Address-Based

Route Reflection (ABRR): the first iBGP solution that com-

pletely solves all oscillation and looping problems, has no

path inefficiencies, and puts no constraints on RR placement.

ABRR does this by emulating the semantics of full-mesh

iBGP, and thereby adopting the correctness and path effi-

ciency properties of full-mesh iBGP. Both traditional Topology-

Based Route Reflection (TBRR) and ABRR take a divide-

and-conquer approach. While TBRR scales by making each

RR responsible for all prefixes from some fraction of routers,

ABRR scales by making each RR responsible for some frac-

tion of prefixes from all routers. We have implemented a

fully functional ABRR prototype. Using BGP data from a

Tier-1 ISP, our analytical and implementation results show

that ABRR’s scaling and convergence properties compare

positively with traditional TBRR.

1. INTRODUCTION

The original model for Internal BGP (iBGP) was full
mesh: all routers in an Autonomous System (AS) peer
with all others [8]. This produces a situation where
all routers in the AS learn the best paths of all other
routers. This allows routers to make best-path deci-
sions consistent with each other (barring configuration
errors), and prevents iBGP-initiated instabilities and
inefficient paths.

Full-mesh iBGP scales poorly: every router is re-
quired to obtain and store state for every other router.
To alleviate this scaling problem, the IETF standard-
ized two mechanisms: Route Reflectors (RR) [8] and
Confederations [36]. Both of these take a divide-and-
conquer approach: they partition the set of AS routers
into smaller groups, and do best-path selection first

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2011, December 6–9 2011, Tokyo, Japan.

Copyright 2011 ACM 978-1-4503-1041-3/11/0012 ...$10.00.

within each group and then across groups. In the case of
Confederations, the AS is split into multiple sub-ASes,
with each sub-AS operating more-or-less like an AS with
its own independent IGP (Interior Gateway Protocol)
and internal full-mesh or RR-based iBGP. In the case of
RRs, the internal peering structure is hierarchical, with
client routers peering only with their parent RRs, and
RRs in turn peering full-mesh with each other. This
structure can have multiple layers of hierarchy.

RRs and Confederations compromise iBGP consis-
tency: different routers learn different routes from iBGP.
This lack of consistency has been shown to produce os-
cillations, forwarding loops, and path inefficiencies [7,
21, 22, 26, 34]. As the RR solution is very commonly
deployed, these problems have been extensively stud-
ied for RRs, and a number of solutions have been pro-
posed [7, 10, 18, 22, 25, 26, 32, 34, 38, 40]. All known
solutions, however, impose constraints of one sort or
another as compared to full-mesh iBGP.

The most common approach, and the one adopted by
industry, is to engineer around the problems through
careful topology configuration [22, 26]: one or a pair of
RRs is placed in most if not every major PoP (Point
of Presence), with clients in the same PoP or nearby
smaller PoPs. The RRs run full-mesh iBGP with each
other. ISPs set IGP metrics so that intra-PoP dis-
tances are always shorter than inter-PoP distances. Al-
together, this effectively constrains the iBGP topology
to match the physical topology. The result is that
both MED-based and topology-based oscillations are
avoided [26], though this arrangement inevitably re-
stricts the RR placement. This approach also avoids
most path inefficiencies: if needed, selected iBGP peer-
ing between clients within a PoP, or the announcement
of additional routes, could remove the remaining path
inefficiencies. Of course, all things being equal, it would
be better if the problems associated with RRs and Con-
federations could be solved fundamentally at the pro-
tocol level rather than through careful network design
and management.

This paper presents what is to our knowledge the first
iBGP solution that:

1. is decentralized in that it divides work among RRs,

2. solves all MED-based and topology-based oscilla-
tions, and forwarding loops,
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Figure 1: With traditional Route Reflection, routers
are assigned to RRs. With Address-Based Route Re-
flection, address ranges are assigned to RRs. The lines
denote iBGP peering sessions.

3. has no iBGP-induced path inefficiencies, and

4. achieves all of the above with no restrictions on
RR placement.

This solution, called Address-Based Route Reflection
(ABRR), is based on a simple key insight:

The BGP best-path decision for any given pre-

fix is independent of that of any other prefix.

By contrast, the BGP best-path decision for any given
prefix at a given router is highly dependent on informa-
tion provided by other routers. This suggests a much
cleaner way to divide-and-conquer iBGP. Rather than
divide on a router basis, we can divide on an address
basis. This idea is illustrated in Figure 1.

Traditional “Topology-Based” Route Reflection (TBRR)
is shown on the left. TBRR route reflectors (TRR) are
associated with different routers, forming groups called
clusters. iBGP peerings are required between clients
and TRRs in a cluster, and also between TRRs. ABRR
is shown on the right. Here, route reflectors (ARR)
are associated with different address ranges. All clients
iBGP-peer with all ARRs, but only advertise prefixes
that fall within the address range of the ARR. Each
ARR, in its role as an ARR, computes best routes only
for some fraction of all prefixes. For each such pre-
fix, however, the ARR has the same knowledge as with
full-mesh, because it peers with all other routers and
therefore directly learns all advertised routes. Robust-
ness is achieved by simply deploying multiple ARRs for
each address range: no coordination between redundant
ARRs is required. ABRR can operate with no new BGP
message formats, though it does require multi-path ca-
pability as defined in the add-paths draft [39].

Our overall approach is to emulate the semantics of
full-mesh iBGP. Full-mesh iBGP has efficient paths and
does not suffer from oscillations. By emulating full-
mesh iBGP, ABRR adopts these characteristics. This
emulation is accomplished using two techniques. First,
compared with TBRR, ABRR reduces the number of
iBGP hops between border routers from three to two.

This leads to a crucial property that, from the perspec-
tive of any given prefix, ABRR is effectively a central-
ized approach. Second, ARRs advertise multiple routes,
namely the set of routes that tie for best on AS-level
path decision metrics. Altogether, this emulation al-
lows routers to learn what they would have learned in
full-mesh iBGP. The end result is that ABRR achieves
semantics equal to full-mesh iBGP, the scalability and
convergence properties comparable to traditional route
reflection, and the freedom to place RRs anywhere.

The value of RR placement freedom is more than just
academic. Increasingly many ISPs are moving away
from hierarchical edge-core topologies, and towards flat
full-mesh tunneled topologies, where every border router
has a virtual link (usually MPLS) with every other [31].
The need for flat topologies is driven not just by Virtual
Private Network (VPN) services, but also by features
like traffic engineering and fast re-route. Indeed, the
Tier-1 ISP we measured now uses pure control-plane
RRs instead of control- and data-plane RRs. While in
principle control-plane RRs could be placed anywhere,
the ISP is forced to place them near their clients in order
to avoid long paths and correctness problems. ABRR
frees up both the placement of RRs and the number of
RRs. Altogether, this paper makes the following con-
tributions:

• It presents what is to our knowledge the first iBGP
solution that removes all limitations on RR place-
ment for both correctness and path-efficiency, while
still dividing work among RRs. (§2)

• It analyzes the performance of ABRR and TBRR,
and finds that ABRR compares positively with
TBRR in terms of storage and convergence time,
for both RRs and clients. (§3)

• It gives the implementation results of fully func-
tional ABRR and TBRR using BGP data from a
Tier-1 ISP. This validates the scalability of ABRR,
and further shows that ABRR requires fewer iBGP
updates for both RRs and clients. (§4)

2. DESIGN OF ABRR

2.1 ABRR Protocol

In many respects, ABRR is similar to Topology-Based
Route Reflection (TBRR). As with TBRR, routers are
Route Reflectors (ARR) or clients of ARRs. Clients
are the sources and sinks of iBGP updates, and ARRs
reflect updates between clients.

The critical difference between TBRR and ABRR is
in how the work of processing updates is partitioned.
In TBRR, a Route Reflector (TRR) is responsible for
all routes from some fraction of routers (its clients).
In ABRR, an ARR is responsible for some fraction of



Table 1: Protocol comparison between TBRR and ABRR. (Note that an ABRR client may also be an ARR, so
ARR ↔ Client messages may be conceptually internal to a router.)

TBRR ABRR

TRR → Client ARR → Client (for routes in AP only)
1. Best routes received from other TRRs 1. Best AS-level routes
2. Best routes received from clients (not returned to sender)

(not returned to sender)
3. Best routes received from eBGP neighbors
4. Best routes locally originated

TRR → TRR ARR → ARR

1. Best routes received from clients
2. Best routes received from eBGP neighbors Not applicable
3. Best routes locally originated

TRR → eBGP Neighbor ARR → eBGP Neighbor

1. All best routes (not returned to sender) Not applicable
Client → TRR Client → ARR (for routes in AP only)

1. Best routes received from eBGP neighbors 1. Best routes received from eBGP neighbors
2. Best routes locally originated 2. Best routes locally originated

Client → eBGP Neighbor Client → eBGP Neighbor

1. All best routes (not returned to sender) 1. All best routes (not returned to sender)
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Figure 2: Flow of updates in ABRR. Links represent
iBGP peering sessions. The terms ARR and client refer
to router roles: the same physical router may be both
an ARR and a client.

routes from all routers. In this paper, we assume that
address ranges are used to determine which routes any
given ARR is responsible for. For instance, ARR1 could
be responsible for 0/8, ARR2 for 1/8, etc. Each such
range is called an Address Partition (AP). An AP can
include multiple prefixes, and different APs can over-
lap. Since prefixes and BGP updates are not evenly
distributed across the whole address space, the network
administrator can select APs that result in a roughly
equal number of routable prefixes and/or BGP updates
per AP.

The flow of updates through the AS is shown in Fig-
ure 2 (with details in Table 1). Clients run the best-path
decision as normal. If a best route is not learned from
iBGP, the client advertises it to whichever ARRs are
responsible for the destination prefix in the route. If a
prefix spans multiple APs, then the associated route is

advertised to the ARRs for all such APs. As with full-
mesh and TBRR, clients never advertise iBGP-learned
routes over iBGP. Clients advertise their best routes to
their eBGP neighbors.

The terms client and ARR refer to functional roles in
the router. In other words, when we refer to a “client”
or “ARR”, implicitly we are referring to the client or
ARR function within the router. The client function
is to be the source and sink of iBGP updates. The
ARR function is to reflect received iBGP updates. Any
data-plane router must be a client (i.e., has the client
function) for every AP. Any router may be an ARR
(i.e., has the ARR function) for one or more APs. A
data-plane router that is an ARR is also a client for
itself, i.e., it has both ARR and client functionality,
and logically passes updates between these functional
components. If an ARR is a pure control-plane device,
then it is an ARR without being a client.

In this paper, when we refer to an ARR, we implicitly
mean with respect to a given AP. For instance, imagine
two routers R1 and R2 that are both ARRs (implied
here is that they are ARRs for the same AP). When
router R1 receives an eBGP update for a destination
prefix within the AP, if that prefix is its best path it
forwards the update to R2. In so doing, it is acting in
its role as a client, and so we can say “client R1 forwards
the update to ARR R2”. Logically the client R1 also
forwards the update to the ARR function within R1.

The only time two routers are iBGP peers (i.e., have
an iBGP peering session) is when one router is a client
and the other is an ARR. ARRs do not peer with each
other, and clients do not peer with each other. Each



Table 2: BGP best-path selection steps from RFC4271.
ARRs compute multiple best AS-level routes using
steps 1∼4 only.

# Decision Process

1 Highest Local Preference
2 Shortest AS Path
3 Lowest Origin Type (IGP→EGP→Incomplete)
4 Lowest Multi-Exit Discriminator (MED)
5 eBGP-learned over iBGP-learned
6 Lowest IGP Metric
7 Lowest Router ID
8 Lowest Peer Address

ARR has an iBGP peering session with every client (we
explain in §3.3 why this is not a scaling issue for mod-
ern routers). Typically we expect to see no more than
10 or 15 APs, and potentially fewer. This is because
the scaling benefits of ABRR reach diminishing returns
beyond that point (see §3.2). Assuming two ARRs per
AP for redundancy, each client peers with no more than
20 to 30 ARRs.

Each client advertises its eBGP-learned or locally-
originated best routes to all ARRs responsible for the
AP containing the route (see Table 1). In this fashion,
all ARRs learn, for all routes in their AP, everything
they would have learned in full-mesh iBGP. All ARRs
(for a given AP) receive the same set of iBGP routes.

From its complete set of learned routes, each ARR
selects and advertises multiple routes for each prefix
directly to all clients. In this manner, compared with
TBRR, ABRR reduces the number of iBGP hops be-
tween border routers from three to two. This leads to
a crucial property that, for any given prefix, ABRR is
effectively a centralized approach. ARRs are not ex-
pected to execute BGP policies. Rather, policies are
deployed at clients, as they would be in a full-mesh sce-
nario.

Specifically, each ARR selects all routes that remain
after steps one through four of the best-path selection
process as described in RFC4271 [33] (see Table 2). We
refer to these as the best AS-level routes, because they
represent all the routes that tie for best in terms of AS-
level criteria. Commercial routers typically have addi-
tional steps interspersed between these four steps. For
instance, Cisco routers have a “largest weight” step be-
fore step 1, and a “locally originated” step after step
1. These steps are not considered in selecting the mul-
tiple routes. The best AS-level routes are advertised
to all clients, with the exception that routes are not
advertised to the client from which they were learned
(see Table 1). The routes are not advertised to other
ARRs since this information would be redundant. The
best AS-level routes can be encoded using the existing

add-paths mechanism in [39].
The effect of adding these additional best AS-level

routes, combined with ABRR’s effectively per-prefix cen-
tralized approach, is that clients learn the same infor-
mation they would have learned from full-mesh iBGP.
This leads ABRR to adopt the behavioral characteris-
tics of full-mesh iBGP, i.e., it has no oscillations, and
no path inefficiencies.1

2.2 ABRR Emulates Full-mesh Semantics

To see why ABRR emulates the semantics of full-
mesh, we can compare the operation of a router in full-
mesh iBGP with that of a client in ABRR. Define an
“iBGP-learned” route as a route learned from iBGP,
and an “other-learned” route as one learned from eBGP
or that is locally originated.

The first thing to note is that an ABRR client trans-
mits into iBGP the same information that a full-mesh
BGP router transmits into iBGP. Specifically, if the
best route for the client/router is other-learned, then
it will advertise that into iBGP. Otherwise, if the best
route is iBGP-learned, it advertises nothing into iBGP
(or withdraws any previous route). Of course, for the
client, “advertise into iBGP” means sending the route
to ARRs, whereas for the full-mesh router, it means
sending the route to all other routers.

Suppose that a router has an other-learned route r

that is its best route among all of its other-learned
routes (for a given prefix).

Assume first that r is also that router’s best route
across all routes (for a given prefix) available to the
AS. In other words, even if the router knew of all other
routes available to the AS, it would still choose this
other-learned route r as its best route. For both full-
mesh and ABRR, r will be advertised on iBGP. This
is because there are no better routes across the AS, so
no matter what routes are received or not received by
the router, r will be its best route, and it will therefore
advertise on iBGP. In the case of full-mesh, r will go
to all other routers. In the case of ABRR, r will go
to the ARR, which in turn must necessarily forward
it to all clients. This is because r is by definition one
of the ARR’s best AS-level routes as well. If it were
not, that would mean that some other route q would
have been selected over r in steps 1∼4 of the selection
process, and this route q would have been forwarded to
the router. But if this is the case, then q would also
be a better route from the router’s point of view, thus
violating our original assumption.

Next, assume that r is not that router’s best route
across all routes available to the AS. Rather some other

1Note that, in full-mesh iBGP, there is a problem that a bor-
der router which ignores the MED attribute might prevent
other routers from learning low-MED routes. Nevertheless,
this can be easily fixed by appropriate configuration.



route q, which is iBGP-learned, is its best route. The
above paragraph shows that q should be advertised to
the router in both full-mesh and ABRR. Therefore, for
both full-mesh and ABRR, the router will not advertise
the route r on iBGP.

Note that it is possible that at a certain time t, the
router is not aware of the better route q, and so does
advertise route r on iBGP. In the case of full-mesh, r

will go to all other routers. In the case of ABRR, there
are two possibilities. If the ARR does not know of q,
then it will forward route r to all other routers. If,
however, the ARR does know of q, it will not forward
r. In this case, the actual routes received by routers
in full-mesh and ABRR differ. Indeed, if in full-mesh
some other routers also do not yet know of q, they may
temporarily accept r as their best route. Eventually,
however, all routers will hear of q, and the router will
withdraw r, so in the steady state the same routes are
delivered for both full-mesh and ABRR.

2.3 ABRR Has No Routing Anomalies

2.3.1 No iBGP Oscillations

Note first that our use of best AS-level routes per
se is not novel: Basu et al. [7] used them to prevent
MED-based oscillations. There are some differences,
however. In Basu’s scheme, all routers advertise all best
AS-level routes, while in ABRR only ARRs advertise all
best AS-level routes — clients only advertise their best
routes (if not iBGP-learned). Nevertheless, the use of
best AS-level routes partially helps ABRR emulate full-
mesh iBGP, and so for this reason also contributes to
preventing MED-based oscillations in ABRR.

Note however that simply propagating best AS-level
routes does not prevent topology-based oscillations [18].
What’s more, these oscillations can only occur between
RRs [19]. Since with ABRR iBGP routes pass through
only one RR, ABRR has no topology-based oscillations.
This means, changing the division of labor among RRs
from topology-based to address-based makes ABRR a
logically centralized approach for any given prefix, which
solves the topology-based oscillations.

2.3.2 No Forwarding Loops

In order to know where to send iBGP updates, routers
must know which other routers are ARRs and clients.
As with TBRR, in ABRR iBGP messages do not loop
when routers are configured correctly. Clients never for-
ward iBGP-learned routes on iBGP. ARRs only send
iBGP-learned routes to clients, not other ARRs.

Of course, routers are not always configured correctly.
Even without mis-configuration per se, router config-
uration will be transiently out of sync when multiple
routers are being updated. Both TBRR and ABRR
may have loops if router configuration is inconsistent.

In the case of ABRR, imagine a situation where there
are three routers, A, B, and C. All three believe that
they themselves are ARRs, but the others are clients.
In the absence of a mechanism to prevent it, a BGP
update in this configuration could hypothetically loop
around A to B to C to A, because each would think it
is receiving an update from a client, and so deliver it
to the other supposed client. Of course, a single loop-
ing update would be recognized as old news and not
continue beyond the first round, but multiple different
updates for the same prefix could potentially chase each
other around the loop indefinitely.

Either loop-detection mechanism used by route re-
flectors today, the Cluster List or the Originator ID [8],
can be used to break loops in ABRR. It’s worth noting,
however, that these are overkill: since an ARR should
never forward a route to another ARR, all that is needed
to break the loop is a single bit indicating that the up-
date has been reflected by an ARR. In our implementa-
tion, we use this approach implemented as an extended
community attribute.

2.3.3 No Path Inefficiencies

ABRR has no iBGP-induced path inefficiencies. The
reasoning is simple: ABRR emulates full-mesh, and full-
mesh has no path inefficiencies (i.e., barring configura-
tion errors, it selects the best next-hop according to IGP
metrics or BGP policies). Because of this, the physi-
cal placement of ARRs within the ISP is irrelevant, at
least for the purpose of path selection. Placement is of
course relevant for robustness. An ARR should not be
placed where single link or router failures can partition
the ARR from the rest of the network. Furthermore,
an ISP would want redundant ARRs, each placed in
geographically diverse locations so as to minimize de-
pendencies on the same links or routers. Two or three
ARRs per AP, however, should be sufficient.

2.4 Transition to ABRR

It is highly desirable for ISPs to be able to transi-
tion from TBRR to ABRR without interrupting ser-
vice. This can be done in an incremental and controlled
fashion as follows. Routers must be able to run both
TBRR and ABRR, but only accept routes from one or
the other, based on configuration. This allows an ISP
to cutover to ABRR one AP, or even fraction of an AP,
at a time. Specifically, the ISP deploys ABRR for a sin-
gle AP, and routers run both TBRR and ABRR, but
initially accept routes only from TBRR. After the ISP
verifies that ABRR is running correctly, it pushes out a
configuration causing all routers to accept routes from
ABRR for that AP (while still accepting routes from
TBRR for APs not yet transitioned). This process re-
peats for each successive AP until all routes are learned
from ABRR. Finally, TBRR can be turned off.



3. PERFORMANCE ANALYSIS

This section, along with Appendix A, provides a pen-
and-paper analysis of the performance of ABRR and
TBRR for both RRs and clients. The subsequent sec-
tion details comparative measurements based on a fully
functional implementation of ABRR and the Quagga [5]
implementation of TBRR, using BGP data from a Tier-
1 ISP. These measurements validate our analysis.

As suggested in a significant amount of previous re-
search [9, 12, 17, 23, 24, 27, 28], to compare ABRR and
TBRR, we are interested in three metrics: the number
of routes that need to be stored, the number of iBGP
peering sessions required, and the iBGP convergence
time. If ABRR performs comparably to TBRR, then
we can conclude that ABRR is overall better because
of its superior correctness and deployment flexibility.

3.1 Best AS-Level Routes

As described in §2.1, ARRs transmit all best AS-level
routes to clients. The scalability of ABRR therefore de-
pends directly on how many best AS-level routes per
prefix there are. There are two main causes for mul-
tiple best AS-level routes. The first cause is multiple
best AS paths to remote ASes. The second cause is
multiple peering points between neighboring ASes. We
use BGP data collected on Dec 20, 2010 from one AS
out of several ASes owned by a Tier-1 ISP to derive the
number of best AS-level routes per prefix, and apply
the result in our analysis. Note that using data from a
Tier-1 ISP gives a conservative estimate, first because
a Tier-1 ISP tends to peer with many large peer ASes,
resulting in many disparate views and therefore many
AS paths; and second because a Tier-1 ISP tends to
have many peering points with each peer AS.

Our Tier-1 ISP data contains about 416K unique pre-
fixes, roughly 76% of which come from peer ASes, and
the rest are locally originated or from customer ASes.
There are more than 1000 BGP routers, less than 10%
of which are peering routers collectively peering with 25
peer ASes. On average, the number of peering points
with each peer AS is about 8. The majority of other
routers are access routers connected to customer ASes.

Figure 3 shows the average number of best AS-level
routes per prefix given the number of peer ASes. We de-
rive this number by selecting the peers of the Tier-1 AS
at random, and then with these selected peers, measur-
ing the number of best AS-level routes per prefix. We
plot two curves. The “Peer ASes Only” curve consid-
ers only routes learned from these selected peer ASes,
while the “All Sources” curve considers routes learned
from various sources, not only including randomly se-
lected peer ASes (as in “Peer ASes Only”), but always
including all the customers and static routes. The re-
sult demonstrates that, for a Tier-1 ISP, path diversity
comes primarily from peer ASes. For lower-tier ISPs,
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Figure 3: Best AS-level routes per prefix

we would expect to see little path diversity from peers,
since lower-tier ISPs generally only exchange static and
customer routes with peers [20]. The primary source of
path diversity for lower-tier ISPs would be their transit
providers. Generally, lower-tier ISPs have only a hand-
ful of transit providers, and so we would expect their
average number of best AS-level routes per prefix to be
towards the left side of the graph in Figure 3.

We fit a regression line to the “All Sources” curve,
denoted as F(#PASs), where PAS denotes Peer AS.
Therefore, the average number of best AS-level routes
per prefix #BAL = F(#PASs), which will be used in
the remainder of our analysis.

3.2 RIB-In and RIB-Out Analysis for RRs

Our definition of RIB-In corresponds to the concep-
tual Adj-RIB-In defined by BGP [33], consisting of the
routes reported by every BGP neighbor. Our defini-
tion of RIB-Out consists of the routes reported to BGP
neighbors, and thus corresponds to the conceptual Adj-
RIB-Out defined by BGP [33]. In our analysis, we de-
rive ARR’s and (traditional) TRR’s RIB-In and RIB-
Out sizes, respectively, under a few practical simplify-
ing assumptions. Appendix A describes the analytical
procedure and expressions in detail.

Traditional TBRR assumes that TRRs advertise a
single best path. In reality, there is an increasing inter-
est among ISPs to advertise additional paths. A com-
parison between ABRR and single-path TBRR is fair
in the sense that single-path TBRR is predominantly
how ISPs deploy TBRR today. The comparison is un-
fair, however, in the sense that ABRR provides multi-
ple paths that may be exploited for traffic engineering
and fast re-route. If an ISP wished to exploit multi-
ple paths, then a fairer comparison would be between
ABRR and a multi-path version of TBRR. For this rea-
son, we provide a second analysis of TBRR, one where
each TRR maintains and advertises all best AS-level
routes. The analytical procedure and expressions for
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Figure 4: # RIB-In Entries of an ARR/TRR. Default values are 2000 routers, 50 APs/Clusters, 2 ARRs/TRRs per
AP/Cluster, and 30 peer ASes. Note that, in (a), (c), and (d), the plots for TBRR and TBRR-multi are identical.
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Figure 5: # RIB-Out Entries of an ARR/TRR. Default values are 2000 routers, 50 APs/Clusters, 2 ARRs/TRRs
per AP/Cluster, and 30 peer ASes.

multi-path TRR can be found in Appendix A.3.
Figures 4 and 5 plot the analytical results for var-

ious RRs’ RIB-In size and RIB-Out size, respectively.
These figures show the scaling effect of four parameters:
the number of routers, the number of APs/Clusters, the
number of ARRs/TRRs per AP/Cluster, and the num-
ber of peer ASes. The intent here is not to give exact
numbers for some specific ISP, but to demonstrate the
general effect of these parameters, and the relative dif-
ferences between ABRR and TBRR (single- and multi-
path). The default setting of these parameters, taken
to model a typical large-scale AS [35], are 2000 routers,
30 peer ASes, and 50 APs/clusters each managed by
2 ARRs/TRRs. Each figure varies one of the parame-
ters while holding the others constant at their default
values. We assume 400K unique prefixes.

The primary takeaway from these figures is that, for
virtually all parameter settings, ABRR has substan-
tially smaller memory requirement than TBRR.

From Figure 4, we see that the parameter that most
influences the number of RIB-In entries in ABRR is the
number of ARRs per AP, i.e., the “redundancy factor”.
This is because routers (ARRs and clients alike) must
maintain a route per ARR. Fortunately, two or three
ARRs per AP are sufficiently redundant, and so mem-
ory growth here is quite limited.

It is interesting to see the effect that the number of
APs has on both RIB-In and RIB-Out sizes (Figures 4b
and 5b respectively). The benefit to RIB-In size from
increasing the number of APs quickly reaches diminish-
ing returns. The number of RIB-In entries is dominated
by the need for an ARR, in its role as a client, to main-
tain the default-free zone (DFZ) routing table.

In the case of RIB-Out, however, it is a different story.
Since ARRs only need to advertise prefixes in their AP
to all clients, the RIB-Out size can be steadily reduced
by increasing the number of APs. While the possible
number of APs is limited only by the number of routers
in the network, the number of clusters is generally lim-
ited by the number of major PoPs. In Figure 5b, this
fact is emphasized by truncating the curves for TBRR
at 100 clusters.

On the other hand, increasing the number of APs also
increases the number of ARRs, and therefore the num-
ber of iBGP peering sessions that clients must main-
tain. This effect is not seen in TBRR, since clients only
iBGP-peer with the TRRs in their cluster, and there-
fore the number of clusters does not matter for clients.
This is further discussed in §3.3 and §3.4.

3.3 Peering Sessions of RRs

In ABRR, every ARR has an iBGP session with every



other router in the AS. By contrast, in TBRR, every
TRR has iBGP sessions with only its clients and other
TRRs. To make this concrete, in the Tier-1 AS we
measured, the TRR with the most sessions has about
200, and the average is about 100. Each ARR in this
network would require over 1000 sessions.

What does this mean in terms of processing and band-
width? Figure 5 shows that the ARR’s RIB-Out is
roughly an order of magnitude smaller than the TRR’s
RIB-Out. This means that the number of BGP updates
that must be generated is correspondingly an order of
magnitude smaller (verified in Figure 7). On the other
hand, the ARR has perhaps an order of magnitude more
iBGP peers. This means that, once generated, a BGP
update may be transmitted more times. From a pro-
cessing point of view, generating an update is far more
expensive than receiving or transmitting one [6]. Indeed
BGP peer groups, where sets of peers can be grouped
into identical policy sets, exploit this characteristic [3].
In other words, ABRR trades-off a substantial gain in
processing for a modest loss in bandwidth.

Putting aside BGP-level processing, there is also a
cost to simply maintain TCP and BGP sessions — ses-
sion states, TCP control blocks, keep-alive messages,
etc. While non-trivial, it is well-known how to scale
TCP sessions. TCP offload engines like [2] can handle
tens of thousands of simultaneous connections through
techniques like buffer reuse [13]. Nowadays, the busi-
ness need for many BGP sessions has steadily increased,
and modern routers like the Cisco ASR1000 series can
handle several thousand BGP sessions, and have been
tested to 8000 sessions each with the full routing ta-
ble [6]. This is well within the session requirement of
an ARR deployed in even the largest ISPs. In addi-
tion, [11] implies that general-purpose computers on the
control-plane can also scale to a large number of peering
sessions. We note that ARR’s boot time may increase
somewhat because of the large number of sessions that
need to be established. However, because ARRs gener-
ally are redundant, and are not in the data path, boot
time is not a critical issue.

An increased number of sessions also increases the
configuration requirement. ISPs, however, can and of-
ten do automate BGP session configuration in their net-
work management systems. Alternatively, BGP peer
discovery could in principle be automated through IGP,
for instance as has been proposed in the IETF [30].

3.4 Analysis for Clients

Although ABRR clients receive all best AS-level routes
from ARRs, they only need to store the best routes.
This is because, should there be a change in the set
of best AS-level routes, the ARRs will convey all such
routes to the clients with each update. Of course, ABRR
clients can choose to store multiple routes for the pur-

poses of traffic engineering or fast re-route. Apples-to-
apples, we can regard the RIB-In and RIB-Out sizes for
ABRR and TBRR clients to be comparable. Because
of multiple routes in each update, the cost of process-
ing a single received update is more for ABRR clients;
however, on the other hand, due to race conditions as
updates propagate through TRRs, TBRR clients will
receive more updates than ABRR clients (see §4.2).

Regarding the number of peering sessions, Figures 4b
and 5b show that only 10 or 15 APs are needed for
ARRs to achieve substantially smaller RIBs than TRRs.
This means that, in reasonable configurations with 2
ARRs per AP, ABRR clients should have no more than
20 or 30 iBGP peering sessions, as compared to two for
TBRR clients. This is well within the capabilities of
the existing installed base. Overall, the scalability of
ABRR and TBRR clients are similar.

3.5 iBGP Convergence Time

The primary contributor to convergence time is the
Minimum Route Advertisement Interval (MRAI) timer,
which determines the minimum interval between the
sending of BGP updates to a given peer for a com-
mon set of destinations [33]. For iBGP, the suggested
default is 5 seconds, a value that is used by many ma-
jor router vendors. Since ABRR reduces the number of
iBGP hops between border routers from three (or oc-
casionally more) in TBRR to two, the impact of MRAI
delay can be considerably reduced by ABRR.

Not all updates are subject to the MRAI delay, and
an ISP can choose to set its value lower. In cases where
MRAI delay does not come into play, ABRR has pros
and cons, though minor either way. On the pro side
is the fact that there is one less iBGP hop in ABRR.
Furthermore, an ARR requires much fewer iBGP up-
dates (see §4.2), thus less processing delay. On the con
side, the RR hop in ABRR may be far across the net-
work, whereas with TBRR, clients tend to be close to
their RRs. In addition, an ARR must transmit a given
update to many clients, thus incurring some transmis-
sion delay for the clients that receive the update. Nev-
ertheless, these delays are quite small (milliseconds),
and should therefore not be a factor in deciding for or
against ABRR. In any event, there is no reason to be-
lieve that ABRR would significantly increase iBGP con-
vergence time. Indeed, in some cases (e.g., with MRAI)
ABRR can significantly reduce it.

3.6 Analysis Summary

The main takeaway from this section is that ABRR
and TBRR scalability are broadly comparable. ARRs
require substantially less memory than TRRs, and pro-
cess correspondingly fewer BGP updates. ARRs have
a large number of iBGP sessions, but in practice this
is not an issue with either modern routers or general-



purpose computers acting as control-plane RRs. More-
over, client scalability differs little between ABRR and
TBRR. Likewise, convergence time is also comparable
or in some cases significantly improved by ABRR.

4. IMPLEMENTATION RESULTS

We implemented ABRR with less than 2000 lines of
C code on the version 0.99.15 code base of Quagga [5],
a routing software package with support for OSPF and
BGP among others. We deployed ABRR on our testbed
running Linux 2.6.32. On the testbed, we additionally
developed a simple pseudo BGP speaker, called route
regenerator, which uses the MRT-format routing trace
to direct BGP feeds towards our implementation. This
testbed allowed us to thoroughly exercise our implemen-
tation, do apples-to-apples comparisons of ABRR with
TBRR, and verify the analytical results from §3.

Although we ran various experiments to measure the
performance, the results we report in this section come
from modeling the iBGP topology of the Tier-1 AS as
used in §3. It has more than 1000 BGP routers spread
over 27 clusters with 2 TRRs per cluster. This topology
exceeds our testbed’s capability, so we limit our exper-
iments to all peering routers and their corresponding
TRRs, which are spread over 13 clusters. The majority
of prefixes (about 315K) and best AS-level routes (10.2
per prefix) come from peer ASes, so this model captures
the main scaling challenges. For ABRR, we configure
between 1 and 32 APs, each with 2 ARRs. The address
range size for each AP is the same.

The BGP update traces for our experiments were
taken from all peering routers starting on Dec. 20, 2010,
and extending two weeks. The traces were obtained
from the Tier-1 ISP’s BGP monitor, which collects and
timestamps BGP updates from the peering routers in
realtime. We start our trace by taking a snapshot of the
peering routers’ RIBs, and generating a series of BGP
announcements from our route regenerators to the ap-
propriate RRs in order to initialize the state. We then
feed the subsequent two-week BGP updates to the RRs.
These updates are delivered in the order they were re-
ceived by BGP monitor. We don’t emulate the link
latency between routers. In other words, the absolute
timing of neither the original BGP updates nor update
handling at original routers is preserved. To partially
gauge the effect of this lack of timing fidelity, we ran
pairs of experiments where the route regenerators fed
updates at different rates. In one case, they were sent
as fast as possible (roughly 20x faster than realtime). In
another case, they were sent in realtime. The resulting
numbers of updates differed by no more than 3%.

4.1 RIB-In and RIB-Out Sizes

Figure 6 gives the min, max, and average RIB-In and
RIB-Out sizes across all RRs after the initial snapshot.
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Figure 6: RIB-In and RIB-Out sizes of an ARR/TRR.
Note that, the histograms within the red dashed rect-
angle are for TRR with #Clusters=13, and all others
are for ARR with various #APs.

It also gives the expected sizes from the analysis. The
result shows that the average experimental number of
RIB-In and RIB-Out entries for ARR matches the anal-
ysis exactly. The min and max, however, differ signifi-
cantly from the average: as much as 50% in some cases.
This is because our experiment uses the uniform ad-
dress ranges each with different numbers of routable
prefixes. ISPs, however, can easily control this variance
by selecting address ranges that have the appropriate
percentage of prefixes.

The average experimental number of RIB entries for
TRR in Figure 6 does not match the analysis exactly.
For RIB-In, the analysis overestimates by 34.9%, and
for RIB-Out, by 13.4%. This is because our analysis
makes the simplifying assumptions that peering routers
are uniformly distributed among clusters, and best AS-
level routes are uniformly distributed among peering
routers (see Appendix A.2). These maximize TRR’s
RIB-In and RIB-Out sizes. In the Tier-1 AS we mea-
sured, the total number of best AS-level routes (over
all prefixes) learned by individual peering routers varies
from 0 to 206,635. This also explains the min/max vari-
ance. Nevertheless, as expected, the RIB-In and RIB-
Out for ARRs are substantially smaller than for TRRs.

4.2 Number of Updates

In this section, we first consider the number of up-
dates received, generated, and transmitted by ARRs
and TRRs. Generated updates are updates to the RIB-
Out. The distinction between generated and transmit-
ted is important because it requires far more processing
to generate an update than to transmit one. We also
consider the number of updates received by clients.

Figure 7 gives the number of updates received and
generated by the RRs during two weeks. The result
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shows that the number of received updates by ARRs
increases with the number of APs. However, the rate
of increase flattens out. Figure 7 also indicates that the
number of updates generated by ARRs shrinks dramat-
ically with the number of APs, and in general is a small
fraction of the number for TRRs. This is in small part
due to the fact that the ARR RIB-Out is about one-
half the size of the TRR RIB-Out (see Figure 6), and
in large part due to the fact that, in ABRR a change
of route only goes to its two ARRs, while in TBRR a
change of route occurs at possibly many TRRs.

To determine the total number of transmitted up-
dates, we compute the number of transmissions that
would have been required to send updates to all clients.
For this, we emulate the Tier-1 AS’s full iBGP topol-
ogy with all 27 clusters for TBRR, and a correspond-
ing ABRR topology with 27 APs. The result is that,
on average, each TRR transmits 2.5 times more up-
dates: 310 updates/second versus 125 updates/second
for ARR. However, for ABRR, each of these updates has
on average 10.2 (best AS-level) routes per prefix, and is
therefore roughly 10 times longer than its TBRR coun-
terpart. Hence, from the point of view of transmission
bandwidth, an ARR transmits roughly four times more
bytes. For route reflectors, ABRR effectively trades-off
a modest loss in bandwidth for a substantial gain in
processing for both received and generated updates.

Regarding the number of updates received by clients,
we surprisingly find that ABRR clients receive roughly
30% fewer updates than TBRR clients2. This is par-
ticularly non-intuitive given that ARRs send updates
to clients once any best AS-level routes changed, while

2This is after adjusting for the fact that, in the Tier-1 AS’s
iBGP topology, about 20% of TBRR clients belong to two
clusters, and therefore receive twice as many updates.

TRRs send updates only when the best routes changed,
and so presumably ABRR clients would receive more
updates. The reason for ABRR’s better performance
here is race conditions in TBRR. It is a frequent occur-
rence (observed both in the original Tier-1 ISP traces
and in our experiment) that updates for the same rout-
ing event, which are processed at roughly the same time
at different clients in different clusters, are nevertheless
processed by their respective TRRs at different times
(by 100’s of ms to several seconds in the Tier-1 ISP
traces, and 100’s of ms in our experiment). The end re-
sult is that a given TRR will receive a series of updates
for the same routing event from different TRRs. Some
of these updates will provide a better route than a pre-
viously received one. Each time this happens, the TRR
will transmit the new update to its clients. A similar
phenomenon [14] has been separately observed on the
propagation of unnecessary BGP withdraws.

By contrast, when a set of ABRR clients receive up-
dates at roughly the same time for a given routing event,
they will forward the updates directly to the same ARR.
Due to the timing of update processing at ARRs, the
ARR will normally have received most or all of these
updates by the time it actually processes them, and
therefore, this ARR only needs to transmit the result-
ing single update to its clients.

5. RELATED WORK

The problems associated with traditional route reflec-
tion — MED-based oscillations, topology-based oscilla-
tions, forwarding loops, and path inefficiencies — were
early reported in [4, 15] and then extensively studied [7,
21, 22, 26, 34].

In the past decade, a lot of effort has been devoted to
solving these routing anomalies in traditional route re-
flection. Much of this work is focused on how to design
and configure the network topology to eliminate these
anomalies. In [22], Griffin and Wilfong described the
sufficient conditions for correct (two-level) iBGP con-
figuration: the RRs always prefer the routes learned
from clients over those learned from non-clients, and
each shortest path between any two routers should be
a valid “signaling path”. However, [38] suggested that
these two conditions are too restrictive for designing
correct iBGP topologies. Moreover, in [18], Flavel and
Roughan showed that, in multi-level hierarchies, con-
figuring IGP metrics such that downstream routers are
closer than any others does not prevent oscillations.
In [38], Vutukuru et al. described a graph separator to
choose the RRs and iBGP sessions by recursively par-
titioning the network into multiple connected compo-
nents while guaranteeing the correctness. In [32], Rawat
and Shayman modeled an AS using the IGP connectiv-
ity graph and iBGP peering graph, and constructed an
oscillation/loop-proof iBGP configuration. With these



configuration guidelines, network operators could de-
sign an optimized network, though not all of the guide-
lines are strictly followed by ISPs. In [16], Feamster and
Balakrishnan developed a router configuration checker
to help network operators find faults in BGP configura-
tions using static analysis. ABRR overcomes the need
for “topology-engineered” solutions, and in particular
the need to restrict the placement of RRs.

Other approaches aim to solve route reflection prob-
lems at the protocol level. In [7], each router advertises
all best AS-level routes to all iBGP neighbors. This
approach solves MED-based oscillations, but not the
topology-based oscillations [18]. Similar to [7], ABRR
also utilizes the best AS-level routes. ABRR, however,
solves all oscillation problems. In [18], all oscillations
are solved by introducing a new step in the BGP best-
path selection process: minimizing logical iBGP hops
before minimizing physical IGP metrics. This intro-
duces the problem of inefficient paths, which can only
be solved through restricted placement of RRs so that
the iBGP topology is close to or the same as the physi-
cal topology. Unlike [18], ABRR has no restrictions on
RR placement even with respect to path efficiency.

The Routing Control Platform (RCP) [11] takes a
very different approach to the iBGP problem. Rather
than full-mesh, routing updates are sent to a central-
ized control-plane BGP speaker (the RCP) which makes
best-path decisions and feeds these back to routers.
These decisions consider the physical topology of the
network so that there are no path inefficiencies. This
work showed that modern general-purpose computers
scale adequately to handle the load, and that the RCP
can be replicated for robustness. The extension [37,
29] of the basic RCP idea goes even further, centraliz-
ing eBGP peering and all routing policies into a small
overlay, thus scaling the iBGP control plane and simpli-
fying policy configuration. We find this RCP argument
in many respects to be compelling. However, RCP is
a substantial departure from how ISPs operate today;
in contrast, ABRR can be executed within the existing
router installed base. An ISP may reasonably worry, for
instance, that while RCP can handle today’s routing re-
quirements, a new requirement like, say, per-voice-call
traffic engineering, might overwhelm the RCP.

6. CONCLUSION

This paper presents Address-Based Route Reflection
(ABRR) that, for the first time, solves all oscillation
problems and finds efficient paths while placing no con-
straints on RR placement. ABRR requires no new BGP
message formats, though it does require the capability
of add-paths [39].

Using BGP data from a Tier-1 ISP, our performance
analysis and implementation results demonstrate that
ABRR’s scaling and convergence properties compare

positively with traditional topology-based route reflec-
tion (TBRR). Overall, combined with ABRR’s superior
correctness and deployment flexibility, we conclude that
ABRR is substantially better than TBRR.
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APPENDIX

A. RIB ANALYSIS FOR RRS
In our analysis, we wish to derive RIB-In and RIB-Out sizes of

RRs given the following input parameters:

• #Prefixes: the total number of prefixes

• #APs or #Clusters: the total number of APs or clusters

• #ARRs or #TRRs: the total number of ARRs or TRRs

• #PASs: the total number of peer ASes (from which we derive
#BAL as already stated in §3.1)

A.1 ABRR
Define the term managed routes as those routes an ARR maintains

in its role as an ARR (learned from clients), and unmanaged routes
as those routes an ARR maintains in its role as a client (learned from
ARRs for other APs). The total RIB-In size SRIB-InARR

is then the
sum of the total due to managed routes Sm

RIB-InARR
and the total due

to unmanaged routes Su
RIB-InARR

:

SRIB-InARR
= S

m
RIB-InARR

+ S
u
RIB-InARR

We make the simplifying assumption that an ARR (or TRR for
that matter) is not a border router. This keeps the math simple and
allows us to isolate ARR (TRR) performance from border router per-
formance. We also make the simplifying assumption that each ARR
only manages one AP, and that prefixes are evenly distributed among
APs. It is well-known that the prefixes are actually not evenly dis-
tributed. This is, however, completely controllable by having an ISP
select APs that have roughly equal numbers of prefixes. Therefore,

for managed routes, each AP contains #Prefixes
#APs

prefixes on average,

and each prefix contributes #BAL best AS-level routes:

S
m
RIB-InARR

= #BAL ×
#Prefixes

#APs

The number of redundant ARRs for any given AP is #ARRs
#APs

. For

unmanaged routes, while each ARR in its role as a client receives all
best AS-level routes for each prefix not within its own AP, it maintains
only one best route to each redundant ARR for each such prefix. This
is because, should there be a change in the set of best AS-level routes
for those unmanaged prefixes, the corresponding ARRs will transmit
all such routes again. Therefore,

S
u
RIB-InARR

=
#ARRs

#APs
× #Prefixes ×

(

1 −
1

#APs

)

Regarding RIB-Out size, ARRs advertise the best AS-level routes
from among their managed routes to all clients (excluding other ARRs
for the same AP), with the exception that they do not transmit routes
to clients from which they received the routes. We assume that ARRs
have configured a single peer group. This is reasonable because all

best AS-level routes are transmitted to all clients, and so there is no
reason to distinguish between clients at least on the basis of topology.
This produces a RIB-Out of:

SRIB-OutARR
= S

m
RIB-InARR

A.2 Traditional TBRR
As with the ABRR analysis, we define managed routes as those

routes that a TRR learns from its clients, and unmanaged routes as
those learned from other TRRs. The total RIB-In size is then:

SRIB-InTRR
= S

m
RIB-InTRR

+ S
u
RIB-InTRR

Clients advertise a route if it is the best route and it is eBGP-
learned or locally originated, and withdraw or not advertise it oth-
erwise. There are #BAL best AS-level routes per prefix across the

entire AS, and so within each cluster there are on average #BAL
#Clusters

best AS-level routes advertised. The TRRs in a cluster must maintain
these routes, and so the RIB-In size due to managed routes is:

S
m
RIB-InTRR

=
#BAL

#Clusters
× #Prefixes

The RIB-In entries for unmanaged routes are of course the entries
advertised by other TRRs. In normal TBRR operation, each TRR
advertises the best route from its cluster to other TRRs. This is be-
cause clusters are normally configured such that intra-cluster routes
are preferred over inter-cluster routes [22, 26]. A TRR will there-
fore advertise one route per prefix no matter how many best AS-level
routes (if not zero) are advertised by its clients. The total number
of routes advertised by all TRRs, then, depends on the distribution
of peering points among clusters, and the distribution of best AS-
level routes among peering points. While real ISPs do not exhibit
the uniform distribution of peering points and best AS-level routes,
they would be close to the uniform distribution. This is because ISPs
are motivated to provide short paths to exit points, and therefore
distribute those exit points evenly across their topologies. For in-
stance, AT&T peering policy mandates that multiple peering points
be geographically diverse [1].

A TRR will advertise to other TRRs one route per prefix if the
number of best AS-level routes is equal to or greater than the number

of clusters, and on average will advertise #BAL
#Clusters

routes otherwise.

Given this, we define a function G to characterize the total number
of routes a TRR will advertise to another TRR as:

G(.) =

{

#BAL
#Clusters

× #Prefixes if #BAL < #Clusters

#Prefixes if #BAL ≥ #Clusters

A TRR will receive G(.) routes from every other TRR. Therefore,
the size of a TRR’s RIB-In from unmanaged routes is:

S
u
RIB-InTRR

= G(.) × (#TRRs − 1)

Regarding TRR’s RIB-Out size, we assume that TRRs have con-
figured two peer groups, one for clients and another for other TRRs.
This is, for instance, the configuration used by the Tier-1 AS we mea-
sured. We can divide the TRR’s advertised routes into two types.
First are the routes that it advertises to other TRRs, the number of
which is captured in the function G(.). These are advertised to all
other TRRs, as well as to all clients except the client from which the
route was learned. Second are the remaining (#Prefixes−G(.)) best
routes which are learned from other TRRs and only advertised to all
clients. Therefore,

SRIB-OutTRR
= G(.) × 2 + (#Prefixes − G(.)) × 1

A.3 Multi-Path TBRR
The analysis of RIB-In and RIB-Out sizes here is quite similar to

that for traditional single-path TBRR (see §A.2), with the exception
that the first term in the function G(.) is always used because we do
not cap the number of routes advertised by a TRR to one per prefix.
Without further explanation, the analysis of RIB-In and RIB-Out
sizes for multi-path TRR is as follows:

S
m
RIB-Inmulti

= S
m
RIB-InTRR

=
#BAL

#Clusters
× #Prefixes

S
u
RIB-Inmulti

= S
m
RIB-Inmulti

× (#TRRs − 1)

SRIB-Inmulti
= S

m
RIB-Inmulti

+ S
u
RIB-Inmulti

SRIB-Outmulti
= S

m
RIB-Inmulti

× 2 + S
u
RIB-Inmulti

× 1


